chatui-helper / vector_store.py
milwright's picture
Add vector RAG functionality as modular tool
7f85357
raw
history blame
8.36 kB
import numpy as np
import pickle
import base64
from typing import List, Dict, Any, Tuple, Optional
import json
from dataclasses import dataclass
try:
from sentence_transformers import SentenceTransformer
HAS_SENTENCE_TRANSFORMERS = True
except ImportError:
HAS_SENTENCE_TRANSFORMERS = False
try:
import faiss
HAS_FAISS = True
except ImportError:
HAS_FAISS = False
@dataclass
class SearchResult:
chunk_id: str
text: str
score: float
metadata: Dict[str, Any]
class VectorStore:
def __init__(self, embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2"):
self.embedding_model_name = embedding_model
self.embedding_model = None
self.index = None
self.chunks = {} # chunk_id -> chunk data
self.chunk_ids = [] # Ordered list for FAISS index mapping
self.dimension = 384 # Default for all-MiniLM-L6-v2
if HAS_SENTENCE_TRANSFORMERS:
self._initialize_model()
def _initialize_model(self):
"""Initialize the embedding model"""
if not HAS_SENTENCE_TRANSFORMERS:
raise ImportError("sentence-transformers not installed")
self.embedding_model = SentenceTransformer(self.embedding_model_name)
# Update dimension based on model
self.dimension = self.embedding_model.get_sentence_embedding_dimension()
def create_embeddings(self, texts: List[str], batch_size: int = 32) -> np.ndarray:
"""Create embeddings for a list of texts"""
if not self.embedding_model:
self._initialize_model()
# Process in batches for efficiency
embeddings = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i + batch_size]
batch_embeddings = self.embedding_model.encode(
batch,
convert_to_numpy=True,
show_progress_bar=False
)
embeddings.append(batch_embeddings)
return np.vstack(embeddings) if embeddings else np.array([])
def build_index(self, chunks: List[Dict[str, Any]], show_progress: bool = True):
"""Build FAISS index from chunks"""
if not HAS_FAISS:
raise ImportError("faiss-cpu not installed")
# Extract texts and build embeddings
texts = [chunk['text'] for chunk in chunks]
if show_progress:
print(f"Creating embeddings for {len(texts)} chunks...")
embeddings = self.create_embeddings(texts)
# Build FAISS index
if show_progress:
print("Building FAISS index...")
# Use IndexFlatIP for inner product (cosine similarity with normalized vectors)
self.index = faiss.IndexFlatIP(self.dimension)
# Normalize embeddings for cosine similarity
faiss.normalize_L2(embeddings)
# Add to index
self.index.add(embeddings)
# Store chunks and maintain mapping
self.chunks = {}
self.chunk_ids = []
for chunk in chunks:
chunk_id = chunk['chunk_id']
self.chunks[chunk_id] = chunk
self.chunk_ids.append(chunk_id)
if show_progress:
print(f"Index built with {len(chunks)} chunks")
def search(self, query: str, top_k: int = 5, score_threshold: float = 0.3) -> List[SearchResult]:
"""Search for similar chunks"""
if not self.index or not self.chunks:
return []
# Create query embedding
query_embedding = self.create_embeddings([query])
# Normalize for cosine similarity
faiss.normalize_L2(query_embedding)
# Search
scores, indices = self.index.search(query_embedding, min(top_k, len(self.chunks)))
# Convert to results
results = []
for score, idx in zip(scores[0], indices[0]):
if idx < 0 or score < score_threshold:
continue
chunk_id = self.chunk_ids[idx]
chunk = self.chunks[chunk_id]
result = SearchResult(
chunk_id=chunk_id,
text=chunk['text'],
score=float(score),
metadata=chunk.get('metadata', {})
)
results.append(result)
return results
def serialize(self) -> Dict[str, Any]:
"""Serialize the vector store for deployment"""
if not self.index:
raise ValueError("No index to serialize")
# Serialize FAISS index
index_bytes = faiss.serialize_index(self.index)
index_base64 = base64.b64encode(index_bytes).decode('utf-8')
return {
'index_base64': index_base64,
'chunks': self.chunks,
'chunk_ids': self.chunk_ids,
'dimension': self.dimension,
'model_name': self.embedding_model_name
}
@classmethod
def deserialize(cls, data: Dict[str, Any]) -> 'VectorStore':
"""Deserialize a vector store from deployment data"""
if not HAS_FAISS:
raise ImportError("faiss-cpu not installed")
store = cls(embedding_model=data['model_name'])
# Deserialize FAISS index
index_bytes = base64.b64decode(data['index_base64'])
store.index = faiss.deserialize_index(index_bytes)
# Restore chunks and mappings
store.chunks = data['chunks']
store.chunk_ids = data['chunk_ids']
store.dimension = data['dimension']
return store
def get_stats(self) -> Dict[str, Any]:
"""Get statistics about the vector store"""
return {
'total_chunks': len(self.chunks),
'index_size': self.index.ntotal if self.index else 0,
'dimension': self.dimension,
'model': self.embedding_model_name
}
class LightweightVectorStore:
"""Lightweight version for deployed spaces without embedding model"""
def __init__(self, serialized_data: Dict[str, Any]):
if not HAS_FAISS:
raise ImportError("faiss-cpu not installed")
# Deserialize FAISS index
index_bytes = base64.b64decode(serialized_data['index_base64'])
self.index = faiss.deserialize_index(index_bytes)
# Restore chunks and mappings
self.chunks = serialized_data['chunks']
self.chunk_ids = serialized_data['chunk_ids']
self.dimension = serialized_data['dimension']
# For query embedding, we'll need to include pre-computed embeddings
# or use a lightweight embedding service
self.query_embeddings_cache = serialized_data.get('query_embeddings_cache', {})
def search_with_embedding(self, query_embedding: np.ndarray, top_k: int = 5, score_threshold: float = 0.3) -> List[SearchResult]:
"""Search using pre-computed query embedding"""
if not self.index or not self.chunks:
return []
# Normalize for cosine similarity
faiss.normalize_L2(query_embedding)
# Search
scores, indices = self.index.search(query_embedding, min(top_k, len(self.chunks)))
# Convert to results
results = []
for score, idx in zip(scores[0], indices[0]):
if idx < 0 or score < score_threshold:
continue
chunk_id = self.chunk_ids[idx]
chunk = self.chunks[chunk_id]
result = SearchResult(
chunk_id=chunk_id,
text=chunk['text'],
score=float(score),
metadata=chunk.get('metadata', {})
)
results.append(result)
return results
# Utility functions
def estimate_index_size(num_chunks: int, dimension: int = 384) -> float:
"""Estimate the size of the index in MB"""
# Rough estimation: 4 bytes per float * dimension * num_chunks
bytes_size = 4 * dimension * num_chunks
# Add overhead for index structure and metadata
overhead = 1.2
return (bytes_size * overhead) / (1024 * 1024)