chatui-helper / app.py
milwright's picture
Update dependencies and fix compatibility issues
e2619ba
raw
history blame
57.6 kB
import gradio as gr
import json
import zipfile
import io
import os
from datetime import datetime
from dotenv import load_dotenv
import requests
from bs4 import BeautifulSoup
import tempfile
from pathlib import Path
# from scraping_service import get_grounding_context_crawl4ai, fetch_url_content_crawl4ai
# Temporary mock functions for testing
def get_grounding_context_crawl4ai(urls):
return "\n\n[URL content would be fetched here]\n\n"
def fetch_url_content_crawl4ai(url):
return f"[Content from {url} would be fetched here]"
# Import RAG components
try:
from rag_tool import RAGTool
HAS_RAG = True
except ImportError:
HAS_RAG = False
RAGTool = None
# Load environment variables from .env file
load_dotenv()
# Template for generated space app (based on mvp_simple.py)
SPACE_TEMPLATE = '''import gradio as gr
import os
import requests
import json
import asyncio
from crawl4ai import AsyncWebCrawler
# Configuration
SPACE_NAME = "{name}"
SPACE_DESCRIPTION = "{description}"
SYSTEM_PROMPT = """{system_prompt}"""
MODEL = "{model}"
GROUNDING_URLS = {grounding_urls}
# Get access code from environment variable for security
ACCESS_CODE = os.environ.get("SPACE_ACCESS_CODE", "{access_code}")
ENABLE_DYNAMIC_URLS = {enable_dynamic_urls}
ENABLE_VECTOR_RAG = {enable_vector_rag}
RAG_DATA = {rag_data_json}
# Get API key from environment - customizable variable name
API_KEY = os.environ.get("{api_key_var}")
async def fetch_url_content_async(url, crawler):
"""Fetch and extract text content from a URL using Crawl4AI"""
try:
result = await crawler.arun(
url=url,
bypass_cache=True,
word_count_threshold=10,
excluded_tags=['script', 'style', 'nav', 'header', 'footer'],
remove_overlay_elements=True
)
if result.success:
content = result.markdown or result.cleaned_html or ""
# Truncate to ~4000 characters
if len(content) > 4000:
content = content[:4000] + "..."
return content
else:
return f"Error fetching {{url}}: Failed to retrieve content"
except Exception as e:
return f"Error fetching {{url}}: {{str(e)}}"
def fetch_url_content(url):
"""Synchronous wrapper for URL fetching"""
async def fetch():
async with AsyncWebCrawler(verbose=False) as crawler:
return await fetch_url_content_async(url, crawler)
try:
return asyncio.run(fetch())
except Exception as e:
return f"Error fetching {{url}}: {{str(e)}}"
# Global cache for URL content to avoid re-crawling in generated spaces
_url_content_cache = {{}}
def get_grounding_context():
"""Fetch context from grounding URLs with caching"""
if not GROUNDING_URLS:
return ""
# Create cache key from URLs
cache_key = tuple(sorted([url for url in GROUNDING_URLS if url and url.strip()]))
# Check cache first
if cache_key in _url_content_cache:
return _url_content_cache[cache_key]
context_parts = []
for i, url in enumerate(GROUNDING_URLS, 1):
if url.strip():
content = fetch_url_content(url.strip())
context_parts.append(f"Context from URL {{i}} ({{url}}):\\n{{content}}")
if context_parts:
result = "\\n\\n" + "\\n\\n".join(context_parts) + "\\n\\n"
else:
result = ""
# Cache the result
_url_content_cache[cache_key] = result
return result
import re
def extract_urls_from_text(text):
"""Extract URLs from text using regex"""
url_pattern = r'https?://[^\\s<>"{{}}|\\^`\\[\\]"]+'
return re.findall(url_pattern, text)
# Initialize RAG context if enabled
if ENABLE_VECTOR_RAG and RAG_DATA:
try:
import faiss
import numpy as np
import base64
class SimpleRAGContext:
def __init__(self, rag_data):
# Deserialize FAISS index
index_bytes = base64.b64decode(rag_data['index_base64'])
self.index = faiss.deserialize_index(index_bytes)
# Restore chunks and mappings
self.chunks = rag_data['chunks']
self.chunk_ids = rag_data['chunk_ids']
def get_context(self, query, max_chunks=3):
"""Get relevant context - simplified version"""
# In production, you'd compute query embedding here
# For now, return a simple message
return "\\n\\n[RAG context would be retrieved here based on similarity search]\\n\\n"
rag_context_provider = SimpleRAGContext(RAG_DATA)
except Exception as e:
print(f"Failed to initialize RAG: {{e}}")
rag_context_provider = None
else:
rag_context_provider = None
def generate_response(message, history):
"""Generate response using OpenRouter API"""
if not API_KEY:
return "Please set your {api_key_var} in the Space settings."
# Get grounding context
grounding_context = get_grounding_context()
# Add RAG context if available
if ENABLE_VECTOR_RAG and rag_context_provider:
rag_context = rag_context_provider.get_context(message)
if rag_context:
grounding_context += rag_context
# If dynamic URLs are enabled, check message for URLs to fetch
if ENABLE_DYNAMIC_URLS:
urls_in_message = extract_urls_from_text(message)
if urls_in_message:
# Fetch content from URLs mentioned in the message
dynamic_context_parts = []
for url in urls_in_message[:3]: # Limit to 3 URLs per message
content = fetch_url_content(url)
dynamic_context_parts.append(f"\\n\\nDynamic context from {{url}}:\\n{{content}}")
if dynamic_context_parts:
grounding_context += "\\n".join(dynamic_context_parts)
# Build enhanced system prompt with grounding context
enhanced_system_prompt = SYSTEM_PROMPT + grounding_context
# Build messages array for the API
messages = [{{"role": "system", "content": enhanced_system_prompt}}]
# Add conversation history - compatible with Gradio 5.x format
for chat in history:
if isinstance(chat, dict):
# New format: {{"role": "user", "content": "..."}} or {{"role": "assistant", "content": "..."}}
messages.append(chat)
else:
# Legacy format: ("user msg", "bot msg")
user_msg, bot_msg = chat
messages.append({{"role": "user", "content": user_msg}})
if bot_msg:
messages.append({{"role": "assistant", "content": bot_msg}})
# Add current message
messages.append({{"role": "user", "content": message}})
# Make API request
try:
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={{
"Authorization": f"Bearer {{API_KEY}}",
"Content-Type": "application/json"
}},
json={{
"model": MODEL,
"messages": messages,
"temperature": {temperature},
"max_tokens": {max_tokens}
}}
)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"Error: {{response.status_code}} - {{response.text}}"
except Exception as e:
return f"Error: {{str(e)}}"
# Access code verification
access_granted = gr.State(False)
_access_granted_global = False # Global fallback
def verify_access_code(code):
\"\"\"Verify the access code\"\"\"
global _access_granted_global
if not ACCESS_CODE:
_access_granted_global = True
return gr.update(visible=False), gr.update(visible=True), gr.update(value=True)
if code == ACCESS_CODE:
_access_granted_global = True
return gr.update(visible=False), gr.update(visible=True), gr.update(value=True)
else:
_access_granted_global = False
return gr.update(visible=True, value="❌ Incorrect access code. Please try again."), gr.update(visible=False), gr.update(value=False)
def protected_generate_response(message, history):
\"\"\"Protected response function that checks access\"\"\"
# Check if access is granted via the global variable
if ACCESS_CODE and not _access_granted_global:
return "Please enter the access code to continue."
return generate_response(message, history)
# Create interface with access code protection
with gr.Blocks(title=SPACE_NAME) as demo:
gr.Markdown(f"# {{SPACE_NAME}}")
gr.Markdown(SPACE_DESCRIPTION)
# Access code section (shown only if ACCESS_CODE is set)
with gr.Column(visible=bool(ACCESS_CODE)) as access_section:
gr.Markdown("### 🔐 Access Required")
gr.Markdown("Please enter the access code provided by your instructor:")
access_input = gr.Textbox(
label="Access Code",
placeholder="Enter access code...",
type="password"
)
access_btn = gr.Button("Submit", variant="primary")
access_error = gr.Markdown(visible=False)
# Main chat interface (hidden until access granted)
with gr.Column(visible=not bool(ACCESS_CODE)) as chat_section:
chat_interface = gr.ChatInterface(
fn=protected_generate_response,
title="", # Title already shown above
description="", # Description already shown above
examples=None
)
# Connect access verification
if ACCESS_CODE:
access_btn.click(
verify_access_code,
inputs=[access_input],
outputs=[access_error, chat_section, access_granted]
)
access_input.submit(
verify_access_code,
inputs=[access_input],
outputs=[access_error, chat_section, access_granted]
)
if __name__ == "__main__":
demo.launch()
'''
# Available models
MODELS = [
"google/gemma-3-27b-it",
"google/gemini-2.0-flash-001",
"mistralai/mistral-medium",
"openai/gpt-4o-nano",
"anthropic/claude-3.5-haiku"
]
def fetch_url_content(url):
"""Fetch and extract text content from a URL"""
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Get text content
text = soup.get_text()
# Clean up whitespace
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
# Truncate to ~4000 characters
if len(text) > 4000:
text = text[:4000] + "..."
return text
except Exception as e:
return f"Error fetching {url}: {str(e)}"
def get_grounding_context(urls):
"""Fetch context from grounding URLs"""
if not urls:
return ""
context_parts = []
for i, url in enumerate(urls, 1):
if url and url.strip():
content = fetch_url_content(url.strip())
context_parts.append(f"Context from URL {i} ({url}):\n{content}")
if context_parts:
return "\n\n" + "\n\n".join(context_parts) + "\n\n"
return ""
def create_readme(config):
"""Generate README with deployment instructions"""
return f"""---
title: {config['name']}
emoji: 🤖
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 5.35.0
app_file: app.py
pinned: false
---
# {config['name']}
{config['description']}
## Quick Deploy to HuggingFace Spaces
### Step 1: Create the Space
1. Go to https://huggingface.co/spaces
2. Click "Create new Space"
3. Choose a name for your Space
4. Select **Gradio** as the SDK
5. Set visibility (Public/Private)
6. Click "Create Space"
### Step 2: Upload Files
1. In your new Space, click "Files" tab
2. Upload these files from the zip:
- `app.py`
- `requirements.txt`
3. Wait for "Building" to complete
### Step 3: Add API Key
1. Go to Settings (gear icon)
2. Click "Variables and secrets"
3. Click "New secret"
4. Name: `{config['api_key_var']}`
5. Value: Your OpenRouter API key
6. Click "Add"
{f'''### Step 4: Configure Access Control
Your Space is configured with access code protection. Students will need to enter the access code to use the chatbot.
1. Go to Settings (gear icon)
2. Click "Variables and secrets"
3. Click "New secret"
4. Name: `SPACE_ACCESS_CODE`
5. Value: `{config['access_code']}`
6. Click "Add"
**Important**: The access code is now stored securely as an environment variable and is not visible in your app code.
To disable access protection:
1. Go to Settings → Variables and secrets
2. Delete the `SPACE_ACCESS_CODE` secret
3. The Space will rebuild automatically with no access protection
''' if config['access_code'] else ''}
### Step {4 if not config['access_code'] else 5}: Get Your API Key
1. Go to https://openrouter.ai/keys
2. Sign up/login if needed
3. Click "Create Key"
4. Copy the key (starts with `sk-or-`)
### Step {5 if not config['access_code'] else 6}: Test Your Space
- Go back to "App" tab
- Your Space should be running!
- Try the example prompts or ask a question
## Configuration
- **Model**: {config['model']}
- **Temperature**: {config['temperature']}
- **Max Tokens**: {config['max_tokens']}
- **API Key Variable**: {config['api_key_var']}"""
# Add optional configuration items
if config['access_code']:
readme_content += f"""
- **Access Code**: {config['access_code']} (Students need this to access the chatbot)"""
if config.get('enable_dynamic_urls'):
readme_content += """
- **Dynamic URL Fetching**: Enabled (Assistant can fetch URLs mentioned in conversations)"""
readme_content += f"""
## Customization
To modify your Space:
1. Edit `app.py` in your Space
2. Update configuration variables at the top
3. Changes deploy automatically
## Troubleshooting
- **"Please set your {config['api_key_var']}"**: Add the secret in Space settings
- **Error 401**: Invalid API key or no credits
- **Error 429**: Rate limit - wait and try again
- **Build failed**: Check requirements.txt formatting
## More Help
- HuggingFace Spaces: https://huggingface.co/docs/hub/spaces
- OpenRouter Docs: https://openrouter.ai/docs
- Gradio Docs: https://gradio.app/docs
---
Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} with Chat U/I Helper
"""
return readme_content
def create_requirements(enable_vector_rag=False):
"""Generate requirements.txt"""
base_requirements = "gradio>=5.35.0\nrequests>=2.32.3\ncrawl4ai>=0.4.0\naiofiles>=24.0"
if enable_vector_rag:
base_requirements += "\nfaiss-cpu==1.7.4\nnumpy==1.24.3"
return base_requirements
def generate_zip(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text, access_code="", enable_dynamic_urls=False, url1="", url2="", url3="", url4="", enable_vector_rag=False, rag_data=None):
"""Generate deployable zip file"""
# Process examples
if examples_text and examples_text.strip():
examples_list = [ex.strip() for ex in examples_text.split('\n') if ex.strip()]
examples_json = json.dumps(examples_list)
else:
examples_json = json.dumps([
"Hello! How can you help me?",
"Tell me something interesting",
"What can you do?"
])
# Process grounding URLs
grounding_urls = []
for url in [url1, url2, url3, url4]:
if url and url.strip():
grounding_urls.append(url.strip())
# Use the provided system prompt directly
# Create config
config = {
'name': name,
'description': description,
'system_prompt': system_prompt,
'model': model,
'api_key_var': api_key_var,
'temperature': temperature,
'max_tokens': int(max_tokens),
'examples': examples_json,
'grounding_urls': json.dumps(grounding_urls),
'access_code': "", # Access code stored in environment variable for security
'enable_dynamic_urls': enable_dynamic_urls,
'enable_vector_rag': enable_vector_rag,
'rag_data_json': json.dumps(rag_data) if rag_data else 'None'
}
# Generate files
app_content = SPACE_TEMPLATE.format(**config)
# Pass original access_code to README for documentation
readme_config = config.copy()
readme_config['access_code'] = access_code or ""
readme_content = create_readme(readme_config)
requirements_content = create_requirements(enable_vector_rag)
# Create zip file with clean naming
filename = f"{name.lower().replace(' ', '_').replace('-', '_')}.zip"
# Create zip in memory and save to disk
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
zip_file.writestr('app.py', app_content)
zip_file.writestr('requirements.txt', requirements_content)
zip_file.writestr('README.md', readme_content)
zip_file.writestr('config.json', json.dumps(config, indent=2))
# Write zip to file
zip_buffer.seek(0)
with open(filename, 'wb') as f:
f.write(zip_buffer.getvalue())
return filename
# Define callback functions outside the interface
def toggle_rag_section(enable_rag):
"""Toggle visibility of RAG section"""
return gr.update(visible=enable_rag)
def process_documents(files, current_rag_tool):
"""Process uploaded documents"""
if not files:
return "Please upload files first", current_rag_tool
if not HAS_RAG:
return "RAG functionality not available. Please install required dependencies.", current_rag_tool
try:
# Initialize RAG tool if not exists
if not current_rag_tool:
current_rag_tool = RAGTool()
# Process files
result = current_rag_tool.process_uploaded_files(files)
if result['success']:
# Create status message
status_parts = [f"✅ {result['message']}"]
# Add file summary
if result['summary']['files_processed']:
status_parts.append("\n**Processed files:**")
for file_info in result['summary']['files_processed']:
status_parts.append(f"- {file_info['name']} ({file_info['chunks']} chunks)")
# Add errors if any
if result.get('errors'):
status_parts.append("\n**Errors:**")
for error in result['errors']:
status_parts.append(f"- {error['file']}: {error['error']}")
# Add index stats
if result.get('index_stats'):
stats = result['index_stats']
status_parts.append(f"\n**Index stats:** {stats['total_chunks']} chunks, {stats['dimension']}D embeddings")
return "\n".join(status_parts), current_rag_tool
else:
return f"❌ {result['message']}", current_rag_tool
except Exception as e:
return f"❌ Error processing documents: {str(e)}", current_rag_tool
def update_sandbox_preview(config_data):
"""Update the sandbox preview with generated content"""
if not config_data:
return "Generate a space configuration to see preview here.", "<div style='text-align: center; padding: 50px; color: #666;'>No preview available</div>"
# Create preview info
preview_text = f"""**Space Configuration:**
- **Name:** {config_data.get('name', 'N/A')}
- **Model:** {config_data.get('model', 'N/A')}
- **Temperature:** {config_data.get('temperature', 'N/A')}
- **Max Tokens:** {config_data.get('max_tokens', 'N/A')}
- **Dynamic URLs:** {'✅ Enabled' if config_data.get('enable_dynamic_urls') else '❌ Disabled'}
- **Vector RAG:** {'✅ Enabled' if config_data.get('enable_vector_rag') else '❌ Disabled'}
**System Prompt Preview:**
```
{config_data.get('system_prompt', 'No system prompt configured')[:500]}{'...' if len(config_data.get('system_prompt', '')) > 500 else ''}
```
**Deployment Package:** `{config_data.get('filename', 'Not generated')}`"""
# Create a basic HTML preview of the chat interface
preview_html = f"""
<div style="border: 1px solid #ddd; border-radius: 8px; padding: 20px; background: #f9f9f9;">
<h3 style="margin-top: 0; color: #333;">{config_data.get('name', 'Chat Interface')}</h3>
<p style="color: #666; margin-bottom: 20px;">{config_data.get('description', 'A customizable AI chat interface')}</p>
<div style="border: 1px solid #ccc; border-radius: 4px; background: white; min-height: 200px; padding: 15px; margin-bottom: 15px;">
<div style="color: #888; text-align: center; padding: 50px 0;">Chat Interface Preview</div>
<div style="background: #f0f8ff; padding: 10px; border-radius: 4px; margin-bottom: 10px; border-left: 3px solid #0066cc;">
<strong>Assistant:</strong> Hello! I'm ready to help you. How can I assist you today?
</div>
</div>
<div style="border: 1px solid #ccc; border-radius: 4px; padding: 10px; background: white;">
<input type="text" placeholder="Type your message here..." style="width: 70%; padding: 8px; border: 1px solid #ddd; border-radius: 4px; margin-right: 10px;">
<button style="padding: 8px 15px; background: #0066cc; color: white; border: none; border-radius: 4px; cursor: pointer;">Send</button>
</div>
<div style="margin-top: 15px; padding: 10px; background: #f0f0f0; border-radius: 4px; font-size: 12px; color: #666;">
<strong>Configuration:</strong> Model: {config_data.get('model', 'N/A')} | Temperature: {config_data.get('temperature', 'N/A')} | Max Tokens: {config_data.get('max_tokens', 'N/A')}
</div>
</div>
"""
return preview_text, preview_html
def on_generate(name, description, system_prompt, enable_research_assistant, role_purpose, intended_audience, key_tasks, additional_context, custom_role_purpose, custom_intended_audience, custom_key_tasks, custom_additional_context, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_tool_state):
if not name or not name.strip():
return gr.update(value="Error: Please provide a Space Title", visible=True), gr.update(visible=False)
try:
# Get RAG data if enabled
rag_data = None
if enable_vector_rag and rag_tool_state:
rag_data = rag_tool_state.get_serialized_data()
# Combine system prompt components if research assistant is enabled
if enable_research_assistant:
# Use the research assistant fields if enabled
if not role_purpose or not role_purpose.strip():
return gr.update(value="Error: Please provide a Role and Purpose for the research assistant", visible=True), gr.update(visible=False)
system_prompt_parts = []
if role_purpose and role_purpose.strip():
system_prompt_parts.append(role_purpose.strip())
if intended_audience and intended_audience.strip():
system_prompt_parts.append(intended_audience.strip())
if key_tasks and key_tasks.strip():
system_prompt_parts.append(key_tasks.strip())
if additional_context and additional_context.strip():
system_prompt_parts.append(additional_context.strip())
final_system_prompt = " ".join(system_prompt_parts)
else:
# Use the direct system prompt field
if not system_prompt or not system_prompt.strip():
return gr.update(value="Error: Please provide a System Prompt for the assistant", visible=True), gr.update(visible=False)
final_system_prompt = system_prompt.strip()
filename = generate_zip(name, description, final_system_prompt, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_data)
success_msg = f"""**Deployment package ready!**
**File**: `{filename}`
**What's included:**
- `app.py` - Ready-to-deploy chat interface
- `requirements.txt` - Dependencies
- `README.md` - Step-by-step deployment guide
- `config.json` - Configuration backup
**Next steps:**
1. Download the zip file below
2. Follow the README instructions to deploy on HuggingFace Spaces
3. Set your `{api_key_var}` secret in Space settings
**Your Space will be live in minutes!**"""
# Update sandbox preview
config_data = {
'name': name,
'description': description,
'system_prompt': final_system_prompt,
'model': model,
'temperature': temperature,
'max_tokens': max_tokens,
'enable_dynamic_urls': enable_dynamic_urls,
'enable_vector_rag': enable_vector_rag,
'filename': filename
}
return gr.update(value=success_msg, visible=True), gr.update(value=filename, visible=True), config_data
except Exception as e:
return gr.update(value=f"Error: {str(e)}", visible=True), gr.update(visible=False)
# Global cache for URL content to avoid re-crawling
url_content_cache = {}
def get_cached_grounding_context(urls):
"""Get grounding context with caching to avoid re-crawling same URLs"""
if not urls:
return ""
# Filter valid URLs
valid_urls = [url for url in urls if url and url.strip()]
if not valid_urls:
return ""
# Create cache key from sorted URLs
cache_key = tuple(sorted(valid_urls))
# Check if we already have this content cached
if cache_key in url_content_cache:
return url_content_cache[cache_key]
# If not cached, fetch using Crawl4AI
grounding_context = get_grounding_context_crawl4ai(valid_urls)
# Cache the result
url_content_cache[cache_key] = grounding_context
return grounding_context
def respond_with_cache_update(message, chat_history, url1="", url2="", url3="", url4=""):
"""Wrapper that updates cache status after responding"""
msg, history = respond(message, chat_history, url1, url2, url3, url4)
cache_status = get_cache_status()
return msg, history, cache_status
def respond(message, chat_history, url1="", url2="", url3="", url4=""):
# Make actual API request to OpenRouter
import os
import requests
# Get API key from environment
api_key = os.environ.get("OPENROUTER_API_KEY")
if not api_key:
response = "Please set your OPENROUTER_API_KEY in the Space settings to use the chat support."
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": response})
return "", chat_history
# Get grounding context from URLs using cached approach
grounding_urls = [url1, url2, url3, url4]
grounding_context = get_cached_grounding_context(grounding_urls)
# Build enhanced system prompt with grounding context
base_system_prompt = """You are an expert assistant specializing in Gradio configurations for HuggingFace Spaces. You have deep knowledge of:
- Gradio interface components and layouts
- HuggingFace Spaces configuration (YAML frontmatter, secrets, environment variables)
- Deployment best practices for Gradio apps on HuggingFace
- Space settings, SDK versions, and hardware requirements
- Troubleshooting common Gradio and HuggingFace Spaces issues
- Integration with various APIs and models through Gradio interfaces
Provide specific, technical guidance focused on Gradio implementation details and HuggingFace Spaces deployment. Include code examples when relevant. Keep responses concise and actionable."""
enhanced_system_prompt = base_system_prompt + grounding_context
# Build conversation history for API
messages = [{
"role": "system",
"content": enhanced_system_prompt
}]
# Add conversation history - Support both new messages format and legacy tuple format
for chat in chat_history:
if isinstance(chat, dict):
# New format: {"role": "user", "content": "..."}
messages.append(chat)
elif isinstance(chat, (list, tuple)) and len(chat) >= 2:
# Legacy format: ("user msg", "bot msg")
user_msg, assistant_msg = chat[0], chat[1]
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
try:
# Make API request to OpenRouter
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
},
json={
"model": "google/gemini-2.0-flash-001",
"messages": messages,
"temperature": 0.7,
"max_tokens": 500
}
)
if response.status_code == 200:
assistant_response = response.json()['choices'][0]['message']['content']
else:
assistant_response = f"Error: {response.status_code} - {response.text}"
except Exception as e:
assistant_response = f"Error: {str(e)}"
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": assistant_response})
return "", chat_history
def clear_chat():
return "", []
def clear_url_cache():
"""Clear the URL content cache"""
global url_content_cache
url_content_cache.clear()
return "✅ URL cache cleared. Next request will re-fetch content."
def get_cache_status():
"""Get current cache status"""
if not url_content_cache:
return "🔄 No URLs cached"
return f"💾 {len(url_content_cache)} URL set(s) cached"
def add_urls(count):
"""Show additional URL fields"""
if count == 2:
return (gr.update(visible=True), gr.update(visible=False),
gr.update(value="+ Add URLs"), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=True), gr.update(visible=True),
gr.update(value="Max URLs", interactive=False), gr.update(visible=True), 4)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def remove_urls(count):
"""Hide URL fields"""
if count == 4:
return (gr.update(visible=True), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=False, value=""), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=False), 2)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def add_chat_urls(count):
"""Show additional chat URL fields"""
if count == 2:
return (gr.update(visible=True), gr.update(visible=False),
gr.update(value="+ Add URLs"), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=True), gr.update(visible=True),
gr.update(value="Max URLs", interactive=False), gr.update(visible=True), 4)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def remove_chat_urls(count):
"""Hide chat URL fields"""
if count == 4:
return (gr.update(visible=True), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=True), 3)
elif count == 3:
return (gr.update(visible=False, value=""), gr.update(visible=False, value=""),
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=False), 2)
else:
return (gr.update(), gr.update(), gr.update(), gr.update(), count)
def toggle_research_assistant(enable_research):
"""Toggle visibility of research assistant detailed fields and disable custom categories"""
if enable_research:
combined_prompt = "You are a research assistant that provides link-grounded information through Crawl4AI web fetching. Use MLA documentation for parenthetical citations and bibliographic entries. This assistant is designed for students and researchers conducting academic inquiry. Your main responsibilities include: analyzing academic sources, fact-checking claims with evidence, providing properly cited research summaries, and helping users navigate scholarly information. Ground all responses in provided URL contexts and any additional URLs you're instructed to fetch. Never rely on memory for factual claims."
return (
gr.update(visible=True), # Show research detailed fields
gr.update(value=combined_prompt), # Update main system prompt
gr.update(value="You are a research assistant that provides link-grounded information through Crawl4AI web fetching. Use MLA documentation for parenthetical citations and bibliographic entries."),
gr.update(value="This assistant is designed for students and researchers conducting academic inquiry."),
gr.update(value="Your main responsibilities include: analyzing academic sources, fact-checking claims with evidence, providing properly cited research summaries, and helping users navigate scholarly information."),
gr.update(value="Ground all responses in provided URL contexts and any additional URLs you're instructed to fetch. Never rely on memory for factual claims."),
gr.update(value=True), # Enable dynamic URL fetching for research template
gr.update(value=False), # Force disable custom categories checkbox
gr.update(visible=False) # Force hide custom categories fields
)
else:
return (
gr.update(visible=False), # Hide research detailed fields
gr.update(value=""), # Clear main system prompt
gr.update(value=""), # Clear research fields
gr.update(value=""),
gr.update(value=""),
gr.update(value=""),
gr.update(value=False), # Disable dynamic URL setting
gr.update(value=False), # Ensure custom categories stays disabled
gr.update(visible=False) # Ensure custom categories fields stay hidden
)
def update_system_prompt_from_fields(role_purpose, intended_audience, key_tasks, additional_context):
"""Update the main system prompt field when research assistant fields change"""
parts = []
if role_purpose and role_purpose.strip():
parts.append(role_purpose.strip())
if intended_audience and intended_audience.strip():
parts.append(intended_audience.strip())
if key_tasks and key_tasks.strip():
parts.append(key_tasks.strip())
if additional_context and additional_context.strip():
parts.append(additional_context.strip())
combined = " ".join(parts)
return gr.update(value=combined)
def toggle_custom_categories(enable_custom):
"""Toggle visibility of custom categories fields and disable research assistant"""
if enable_custom:
return (
gr.update(visible=True), # Show custom categories fields
gr.update(value=False), # Force disable research assistant checkbox
gr.update(visible=False) # Force hide research assistant fields
)
else:
return (
gr.update(visible=False), # Hide custom categories fields
gr.update(value=False), # Ensure research assistant stays disabled
gr.update(visible=False) # Ensure research assistant fields stay hidden
)
# Create Gradio interface with proper tab structure
with gr.Blocks(title="Chat U/I Helper") as demo:
# Global state for cross-tab functionality
sandbox_state = gr.State({})
with gr.Tabs():
with gr.Tab("Configuration"):
gr.Markdown("# Spaces Configuration")
gr.Markdown("Convert custom assistants from HuggingChat into chat interfaces with HuggingFace Spaces. Configure and download everything needed to deploy a simple HF space using Gradio.")
with gr.Column():
name = gr.Textbox(
label="Space Title",
placeholder="My Course Helper",
value="My Custom Space"
)
description = gr.Textbox(
label="Space Description",
placeholder="A customizable AI chat interface for...",
lines=2,
value=""
)
model = gr.Dropdown(
label="Model",
choices=MODELS,
value=MODELS[0],
info="Choose based on the context and purposes of your space"
)
api_key_var = gr.Textbox(
label="API Key Variable Name",
value="OPENROUTER_API_KEY",
info="Name for the secret in HuggingFace Space settings"
)
access_code = gr.Textbox(
label="Access Code (Optional)",
placeholder="Leave empty for public access, or enter code for student access",
info="If set, students must enter this code to access the chatbot",
type="password"
)
with gr.Accordion("Assistant Configuration", open=True):
gr.Markdown("### Configure your assistant's behavior and capabilities")
gr.Markdown("Define the system prompt and assistant settings. You can use pre-configured templates or custom fields.")
# Main system prompt field - always visible
system_prompt = gr.Textbox(
label="System Prompt",
placeholder="You are a helpful assistant that...",
lines=4,
value="",
info="Define the assistant's role, purpose, and behavior in a single prompt"
)
# Assistant configuration options
with gr.Row():
enable_research_assistant = gr.Checkbox(
label="Research Template",
value=False,
info="Enable to use pre-configured research assistant settings"
)
enable_custom_categories = gr.Checkbox(
label="Use Custom Categories",
value=False,
info="Enable structured fields for defining your assistant"
)
# Detailed fields for research assistant (initially hidden)
with gr.Column(visible=False) as research_detailed_fields:
gr.Markdown("*The system prompt above will be automatically populated with these fields when enabled*")
role_purpose = gr.Textbox(
label="Role and Purpose",
placeholder="You are a research assistant that...",
lines=2,
value="",
info="Define what the assistant is and its primary function"
)
intended_audience = gr.Textbox(
label="Intended Audience",
placeholder="This assistant is designed for undergraduate students...",
lines=2,
value="",
info="Specify who will be using this assistant and their context"
)
key_tasks = gr.Textbox(
label="Key Tasks",
placeholder="Your main responsibilities include...",
lines=3,
value="",
info="List the specific tasks and capabilities the assistant should focus on"
)
additional_context = gr.Textbox(
label="Additional Context",
placeholder="Remember to always...",
lines=2,
value="",
info="Any additional instructions, constraints, or behavioral guidelines"
)
# Custom categories fields (initially hidden)
with gr.Column(visible=False) as custom_categories_fields:
gr.Markdown("#### Custom Assistant Categories")
gr.Markdown("*The system prompt above will be automatically populated with these fields when enabled*")
custom_role_purpose = gr.Textbox(
label="Role and Purpose",
placeholder="Define what the assistant is and its primary function",
lines=2,
value="",
info="Define what the assistant is and its primary function"
)
custom_intended_audience = gr.Textbox(
label="Intended Audience",
placeholder="Specify who will be using this assistant and their context",
lines=2,
value="",
info="Specify who will be using this assistant and their context"
)
custom_key_tasks = gr.Textbox(
label="Key Tasks",
placeholder="List the specific tasks and capabilities the assistant should focus on",
lines=3,
value="",
info="List the specific tasks and capabilities the assistant should focus on"
)
custom_additional_context = gr.Textbox(
label="Additional Context",
placeholder="Any additional instructions, constraints, or behavioral guidelines",
lines=2,
value="",
info="Any additional instructions, constraints, or behavioral guidelines"
)
examples_text = gr.Textbox(
label="Example Prompts (one per line)",
placeholder="Can you analyze this research paper: https://example.com/paper.pdf\nWhat are the latest findings on climate change adaptation?\nHelp me fact-check claims about renewable energy efficiency",
lines=3,
info="These will appear as clickable examples in the chat interface"
)
with gr.Accordion("Tool Settings", open=False):
enable_dynamic_urls = gr.Checkbox(
label="Enable Dynamic URL Fetching",
value=False,
info="Allow the assistant to fetch additional URLs mentioned in conversations (uses Crawl4AI)"
)
enable_vector_rag = gr.Checkbox(
label="Enable Document RAG",
value=False,
info="Upload documents for context-aware responses (PDF, DOCX, TXT, MD)",
visible=True if HAS_RAG else False
)
with gr.Column(visible=False) as rag_section:
gr.Markdown("### Document Upload")
file_upload = gr.File(
label="Upload Documents",
file_types=[".pdf", ".docx", ".txt", ".md"],
file_count="multiple",
type="filepath"
)
process_btn = gr.Button("Process Documents", variant="secondary")
rag_status = gr.Markdown()
# State to store RAG tool
rag_tool_state = gr.State(None)
with gr.Accordion("URL Grounding (Optional)", open=False):
gr.Markdown("Add URLs to provide context. Content will be fetched and added to the system prompt.")
# Initial URL fields
url1 = gr.Textbox(
label="URL 1",
placeholder="https://example.com/page1",
info="First URL for context grounding"
)
url2 = gr.Textbox(
label="URL 2",
placeholder="https://example.com/page2",
info="Second URL for context grounding"
)
# Additional URL fields (initially hidden)
url3 = gr.Textbox(
label="URL 3",
placeholder="https://example.com/page3",
info="Third URL for context grounding",
visible=False
)
url4 = gr.Textbox(
label="URL 4",
placeholder="https://example.com/page4",
info="Fourth URL for context grounding",
visible=False
)
# URL management buttons
with gr.Row():
add_url_btn = gr.Button("+ Add URLs", size="sm")
remove_url_btn = gr.Button("- Remove URLs", size="sm", visible=False)
url_count = gr.State(2) # Track number of visible URLs
examples_text = gr.Textbox(
label="Example Prompts (one per line)",
placeholder="Can you analyze this research paper: https://example.com/paper.pdf\nWhat are the latest findings on climate change adaptation?\nHelp me fact-check claims about renewable energy efficiency",
lines=3,
info="These will appear as clickable examples in the chat interface"
)
with gr.Row():
temperature = gr.Slider(
label="Temperature",
minimum=0,
maximum=2,
value=0.7,
step=0.1,
info="Higher = more creative, Lower = more focused"
)
max_tokens = gr.Slider(
label="Max Response Tokens",
minimum=50,
maximum=4096,
value=500,
step=50
)
generate_btn = gr.Button("Generate Deployment Package", variant="primary")
status = gr.Markdown(visible=False)
download_file = gr.File(label="Download your zip package", visible=False)
# Connect the research assistant checkbox
enable_research_assistant.change(
toggle_research_assistant,
inputs=[enable_research_assistant],
outputs=[research_detailed_fields, system_prompt, role_purpose, intended_audience, key_tasks, additional_context, enable_dynamic_urls, enable_custom_categories, custom_categories_fields]
)
# Connect the custom categories checkbox
enable_custom_categories.change(
toggle_custom_categories,
inputs=[enable_custom_categories],
outputs=[custom_categories_fields, enable_research_assistant, research_detailed_fields]
)
# Connect research assistant fields to update main system prompt
for field in [role_purpose, intended_audience, key_tasks, additional_context]:
field.change(
update_system_prompt_from_fields,
inputs=[role_purpose, intended_audience, key_tasks, additional_context],
outputs=[system_prompt]
)
# Connect custom categories fields to update main system prompt
for field in [custom_role_purpose, custom_intended_audience, custom_key_tasks, custom_additional_context]:
field.change(
update_system_prompt_from_fields,
inputs=[custom_role_purpose, custom_intended_audience, custom_key_tasks, custom_additional_context],
outputs=[system_prompt]
)
# Connect the URL management buttons
add_url_btn.click(
add_urls,
inputs=[url_count],
outputs=[url3, url4, add_url_btn, remove_url_btn, url_count]
)
remove_url_btn.click(
remove_urls,
inputs=[url_count],
outputs=[url3, url4, add_url_btn, remove_url_btn, url_count]
)
# Connect RAG functionality
enable_vector_rag.change(
toggle_rag_section,
inputs=[enable_vector_rag],
outputs=[rag_section]
)
process_btn.click(
process_documents,
inputs=[file_upload, rag_tool_state],
outputs=[rag_status, rag_tool_state]
)
# Connect the generate button
generate_btn.click(
on_generate,
inputs=[name, description, system_prompt, enable_research_assistant, role_purpose, intended_audience, key_tasks, additional_context, custom_role_purpose, custom_intended_audience, custom_key_tasks, custom_additional_context, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4, enable_vector_rag, rag_tool_state],
outputs=[status, download_file, sandbox_state]
)
with gr.Tab("Support"):
gr.Markdown("# Chat Support")
gr.Markdown("Get personalized guidance on configuring chat assistants as HuggingFace Spaces for educational & research purposes.")
# Meta chat interface
with gr.Column():
chatbot = gr.Chatbot(
value=[],
label="Chat Support Assistant",
height=400,
type="messages"
)
msg = gr.Textbox(
label="Ask about configuring chat UIs for courses, research, or custom HuggingFace Spaces",
placeholder="How can I configure a chat UI for my senior seminar?",
lines=2
)
with gr.Accordion("URL Grounding (Optional)", open=False):
gr.Markdown("Add URLs to provide additional context for more informed responses")
chat_url1 = gr.Textbox(
label="URL 1",
value="https://huggingface.co/docs/hub/en/spaces-overview",
info="HuggingFace Spaces Overview"
)
chat_url2 = gr.Textbox(
label="URL 2",
value="",
placeholder="https://example.com/page2",
info="Additional context URL"
)
# Additional URL fields for chat (initially hidden)
chat_url3 = gr.Textbox(
label="URL 3",
placeholder="https://example.com/page3",
info="Additional context URL",
visible=False
)
chat_url4 = gr.Textbox(
label="URL 4",
placeholder="https://example.com/page4",
info="Additional context URL",
visible=False
)
# Chat URL management buttons
with gr.Row():
add_chat_url_btn = gr.Button("+ Add URLs", size="sm")
remove_chat_url_btn = gr.Button("- Remove URLs", size="sm", visible=False)
chat_url_count = gr.State(2) # Track number of visible chat URLs
# Cache controls
with gr.Row():
cache_status = gr.Markdown("🔄 No URLs cached")
clear_cache_btn = gr.Button("Clear URL Cache", size="sm")
with gr.Row():
submit = gr.Button("Send", variant="primary")
clear = gr.Button("Clear")
gr.Examples(
examples=[
"How do I set up a course assistant?",
"Which model should I use?",
"What's a good system prompt?",
"Why Gradio? What is it?",
"How do I customize the chat interface?",
"Can you help me troubleshoot?",
],
inputs=msg
)
# Connect the chat URL management buttons
add_chat_url_btn.click(
add_chat_urls,
inputs=[chat_url_count],
outputs=[chat_url3, chat_url4, add_chat_url_btn, remove_chat_url_btn, chat_url_count]
)
remove_chat_url_btn.click(
remove_chat_urls,
inputs=[chat_url_count],
outputs=[chat_url3, chat_url4, add_chat_url_btn, remove_chat_url_btn, chat_url_count]
)
# Connect cache controls
clear_cache_btn.click(clear_url_cache, outputs=[cache_status])
# Connect the chat functionality
submit.click(respond_with_cache_update, [msg, chatbot, chat_url1, chat_url2, chat_url3, chat_url4], [msg, chatbot, cache_status])
msg.submit(respond_with_cache_update, [msg, chatbot, chat_url1, chat_url2, chat_url3, chat_url4], [msg, chatbot, cache_status])
clear.click(clear_chat, outputs=[msg, chatbot])
with gr.Tab("Sandbox"):
gr.Markdown("# Generated Space Preview")
gr.Markdown("Preview your generated HuggingFace Space before deployment.")
with gr.Row():
with gr.Column(scale=1):
preview_info_display = gr.Markdown("Generate a space configuration to see preview here.")
with gr.Column(scale=2):
preview_iframe_display = gr.HTML("<div style='text-align: center; padding: 50px; color: #666;'>No preview available</div>")
if __name__ == "__main__":
# Check if running in local development with dev tunnels
if os.environ.get('CODESPACES') or 'devtunnels.ms' in os.environ.get('GRADIO_SERVER_NAME', ''):
demo.launch(share=True, allowed_paths=[], server_name="0.0.0.0")
else:
demo.launch(share=True)