Spaces:
Running
Running
import gradio as gr | |
import json | |
import zipfile | |
import io | |
import os | |
from datetime import datetime | |
from dotenv import load_dotenv | |
import requests | |
from bs4 import BeautifulSoup | |
from scraping_service import get_grounding_context_crawl4ai, fetch_url_content_crawl4ai | |
# Load environment variables from .env file | |
load_dotenv() | |
# Template for generated space app (based on mvp_simple.py) | |
SPACE_TEMPLATE = '''import gradio as gr | |
import os | |
import requests | |
import json | |
import asyncio | |
from crawl4ai import AsyncWebCrawler | |
# Configuration | |
SPACE_NAME = "{name}" | |
SPACE_DESCRIPTION = "{description}" | |
SYSTEM_PROMPT = """{system_prompt}""" | |
MODEL = "{model}" | |
GROUNDING_URLS = {grounding_urls} | |
ACCESS_CODE = "{access_code}" | |
ENABLE_DYNAMIC_URLS = {enable_dynamic_urls} | |
# Get API key from environment - customizable variable name | |
API_KEY = os.environ.get("{api_key_var}") | |
async def fetch_url_content_async(url, crawler): | |
"""Fetch and extract text content from a URL using Crawl4AI""" | |
try: | |
result = await crawler.arun( | |
url=url, | |
bypass_cache=True, | |
word_count_threshold=10, | |
excluded_tags=['script', 'style', 'nav', 'header', 'footer'], | |
remove_overlay_elements=True | |
) | |
if result.success: | |
content = result.markdown or result.cleaned_html or "" | |
# Truncate to ~4000 characters | |
if len(content) > 4000: | |
content = content[:4000] + "..." | |
return content | |
else: | |
return f"Error fetching {{url}}: Failed to retrieve content" | |
except Exception as e: | |
return f"Error fetching {{url}}: {{str(e)}}" | |
def fetch_url_content(url): | |
"""Synchronous wrapper for URL fetching""" | |
async def fetch(): | |
async with AsyncWebCrawler(verbose=False) as crawler: | |
return await fetch_url_content_async(url, crawler) | |
try: | |
return asyncio.run(fetch()) | |
except Exception as e: | |
return f"Error fetching {{url}}: {{str(e)}}" | |
# Global cache for URL content to avoid re-crawling in generated spaces | |
_url_content_cache = {{}} | |
def get_grounding_context(): | |
"""Fetch context from grounding URLs with caching""" | |
if not GROUNDING_URLS: | |
return "" | |
# Create cache key from URLs | |
cache_key = tuple(sorted([url for url in GROUNDING_URLS if url and url.strip()])) | |
# Check cache first | |
if cache_key in _url_content_cache: | |
return _url_content_cache[cache_key] | |
context_parts = [] | |
for i, url in enumerate(GROUNDING_URLS, 1): | |
if url.strip(): | |
content = fetch_url_content(url.strip()) | |
context_parts.append(f"Context from URL {{i}} ({{url}}):\\n{{content}}") | |
if context_parts: | |
result = "\\n\\n" + "\\n\\n".join(context_parts) + "\\n\\n" | |
else: | |
result = "" | |
# Cache the result | |
_url_content_cache[cache_key] = result | |
return result | |
import re | |
def extract_urls_from_text(text): | |
"""Extract URLs from text using regex""" | |
url_pattern = r'https?://[^\\s<>"{{}}|\\^`\\[\\]"]+' | |
return re.findall(url_pattern, text) | |
def generate_response(message, history): | |
"""Generate response using OpenRouter API""" | |
if not API_KEY: | |
return "Please set your {api_key_var} in the Space settings." | |
# Get grounding context | |
grounding_context = get_grounding_context() | |
# If dynamic URLs are enabled, check message for URLs to fetch | |
if ENABLE_DYNAMIC_URLS: | |
urls_in_message = extract_urls_from_text(message) | |
if urls_in_message: | |
# Fetch content from URLs mentioned in the message | |
dynamic_context_parts = [] | |
for url in urls_in_message[:3]: # Limit to 3 URLs per message | |
content = fetch_url_content(url) | |
dynamic_context_parts.append(f"\\n\\nDynamic context from {{url}}:\\n{{content}}") | |
if dynamic_context_parts: | |
grounding_context += "\\n".join(dynamic_context_parts) | |
# Build enhanced system prompt with grounding context | |
enhanced_system_prompt = SYSTEM_PROMPT + grounding_context | |
# Build messages array for the API | |
messages = [{{"role": "system", "content": enhanced_system_prompt}}] | |
# Add conversation history - compatible with Gradio 5.x format | |
for chat in history: | |
if isinstance(chat, dict): | |
# New format: {{"role": "user", "content": "..."}} or {{"role": "assistant", "content": "..."}} | |
messages.append(chat) | |
else: | |
# Legacy format: ("user msg", "bot msg") | |
user_msg, bot_msg = chat | |
messages.append({{"role": "user", "content": user_msg}}) | |
if bot_msg: | |
messages.append({{"role": "assistant", "content": bot_msg}}) | |
# Add current message | |
messages.append({{"role": "user", "content": message}}) | |
# Make API request | |
try: | |
response = requests.post( | |
url="https://openrouter.ai/api/v1/chat/completions", | |
headers={{ | |
"Authorization": f"Bearer {{API_KEY}}", | |
"Content-Type": "application/json" | |
}}, | |
json={{ | |
"model": MODEL, | |
"messages": messages, | |
"temperature": {temperature}, | |
"max_tokens": {max_tokens} | |
}} | |
) | |
if response.status_code == 200: | |
return response.json()['choices'][0]['message']['content'] | |
else: | |
return f"Error: {{response.status_code}} - {{response.text}}" | |
except Exception as e: | |
return f"Error: {{str(e)}}" | |
# Access code verification | |
access_granted = gr.State(False) | |
def verify_access_code(code): | |
\"\"\"Verify the access code\"\"\" | |
if not ACCESS_CODE: | |
return gr.update(visible=False), gr.update(visible=True), True | |
if code == ACCESS_CODE: | |
return gr.update(visible=False), gr.update(visible=True), True | |
else: | |
return gr.update(visible=True, value="❌ Incorrect access code. Please try again."), gr.update(visible=False), False | |
def protected_generate_response(message, history, access_state): | |
\"\"\"Protected response function that checks access\"\"\" | |
if not access_state: | |
return "Please enter the access code to continue." | |
return generate_response(message, history) | |
# Create interface with access code protection | |
with gr.Blocks(title=SPACE_NAME) as demo: | |
gr.Markdown(f"# {{SPACE_NAME}}") | |
gr.Markdown(SPACE_DESCRIPTION) | |
# Access code section (shown only if ACCESS_CODE is set) | |
with gr.Column(visible=bool(ACCESS_CODE)) as access_section: | |
gr.Markdown("### 🔐 Access Required") | |
gr.Markdown("Please enter the access code provided by your instructor:") | |
access_input = gr.Textbox( | |
label="Access Code", | |
placeholder="Enter access code...", | |
type="password" | |
) | |
access_btn = gr.Button("Submit", variant="primary") | |
access_error = gr.Markdown(visible=False) | |
# Main chat interface (hidden until access granted) | |
with gr.Column(visible=not bool(ACCESS_CODE)) as chat_section: | |
chat_interface = gr.ChatInterface( | |
fn=lambda msg, hist: protected_generate_response(msg, hist, access_granted.value), | |
title="", # Title already shown above | |
description="", # Description already shown above | |
examples={examples} | |
) | |
# Connect access verification | |
if ACCESS_CODE: | |
access_btn.click( | |
verify_access_code, | |
inputs=[access_input], | |
outputs=[access_error, chat_section, access_granted] | |
) | |
access_input.submit( | |
verify_access_code, | |
inputs=[access_input], | |
outputs=[access_error, chat_section, access_granted] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
''' | |
# Available models | |
MODELS = [ | |
"google/gemma-3-27b-it", | |
"google/gemini-2.0-flash-001", | |
"mistralai/mistral-medium", | |
"openai/gpt-4o-nano", | |
"anthropic/claude-3.5-haiku" | |
] | |
def fetch_url_content(url): | |
"""Fetch and extract text content from a URL""" | |
try: | |
response = requests.get(url, timeout=10) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# Remove script and style elements | |
for script in soup(["script", "style"]): | |
script.decompose() | |
# Get text content | |
text = soup.get_text() | |
# Clean up whitespace | |
lines = (line.strip() for line in text.splitlines()) | |
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
text = ' '.join(chunk for chunk in chunks if chunk) | |
# Truncate to ~4000 characters | |
if len(text) > 4000: | |
text = text[:4000] + "..." | |
return text | |
except Exception as e: | |
return f"Error fetching {url}: {str(e)}" | |
def get_grounding_context(urls): | |
"""Fetch context from grounding URLs""" | |
if not urls: | |
return "" | |
context_parts = [] | |
for i, url in enumerate(urls, 1): | |
if url and url.strip(): | |
content = fetch_url_content(url.strip()) | |
context_parts.append(f"Context from URL {i} ({url}):\n{content}") | |
if context_parts: | |
return "\n\n" + "\n\n".join(context_parts) + "\n\n" | |
return "" | |
def create_readme(config): | |
"""Generate README with deployment instructions""" | |
return f"""--- | |
title: {config['name']} | |
emoji: 🤖 | |
colorFrom: blue | |
colorTo: red | |
sdk: gradio | |
sdk_version: 4.32.0 | |
app_file: app.py | |
pinned: false | |
--- | |
# {config['name']} | |
{config['description']} | |
## Quick Deploy to HuggingFace Spaces | |
### Step 1: Create the Space | |
1. Go to https://huggingface.co/spaces | |
2. Click "Create new Space" | |
3. Choose a name for your Space | |
4. Select **Gradio** as the SDK | |
5. Set visibility (Public/Private) | |
6. Click "Create Space" | |
### Step 2: Upload Files | |
1. In your new Space, click "Files" tab | |
2. Upload these files from the zip: | |
- `app.py` | |
- `requirements.txt` | |
3. Wait for "Building" to complete | |
### Step 3: Add API Key | |
1. Go to Settings (gear icon) | |
2. Click "Variables and secrets" | |
3. Click "New secret" | |
4. Name: `{config['api_key_var']}` | |
5. Value: Your OpenRouter API key | |
6. Click "Add" | |
{f'''### Step 4: Configure Access Control (Optional) | |
Your Space is configured with access code protection. Students will need to enter the access code to use the chatbot. | |
**Access Code**: `{config['access_code']}` | |
To disable access protection: | |
1. Edit `app.py` in your Space | |
2. Change `ACCESS_CODE = "{config['access_code']}"` to `ACCESS_CODE = ""` | |
3. The Space will rebuild automatically | |
''' if config['access_code'] else ''} | |
### Step {4 if not config['access_code'] else 5}: Get Your API Key | |
1. Go to https://openrouter.ai/keys | |
2. Sign up/login if needed | |
3. Click "Create Key" | |
4. Copy the key (starts with `sk-or-`) | |
### Step {5 if not config['access_code'] else 6}: Test Your Space | |
- Go back to "App" tab | |
- Your Space should be running! | |
- Try the example prompts or ask a question | |
## Configuration | |
- **Model**: {config['model']} | |
- **Temperature**: {config['temperature']} | |
- **Max Tokens**: {config['max_tokens']} | |
- **API Key Variable**: {config['api_key_var']}{f""" | |
- **Access Code**: {config['access_code']} (Students need this to access the chatbot)""" if config['access_code'] else ""}{f""" | |
- **Dynamic URL Fetching**: Enabled (Assistant can fetch URLs mentioned in conversations)""" if config.get('enable_dynamic_urls') else ""} | |
## Customization | |
To modify your Space: | |
1. Edit `app.py` in your Space | |
2. Update configuration variables at the top | |
3. Changes deploy automatically | |
## Troubleshooting | |
- **"Please set your {config['api_key_var']}"**: Add the secret in Space settings | |
- **Error 401**: Invalid API key or no credits | |
- **Error 429**: Rate limit - wait and try again | |
- **Build failed**: Check requirements.txt formatting | |
## More Help | |
- HuggingFace Spaces: https://huggingface.co/docs/hub/spaces | |
- OpenRouter Docs: https://openrouter.ai/docs | |
- Gradio Docs: https://gradio.app/docs | |
--- | |
Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} with Chat U/I Helper | |
""" | |
def create_requirements(): | |
"""Generate requirements.txt""" | |
return "gradio==4.44.1\nrequests==2.32.3\ncrawl4ai==0.4.245" | |
def generate_zip(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text, access_code="", enable_dynamic_urls=False, url1="", url2="", url3="", url4=""): | |
"""Generate deployable zip file""" | |
# Process examples | |
if examples_text and examples_text.strip(): | |
examples_list = [ex.strip() for ex in examples_text.split('\n') if ex.strip()] | |
examples_json = json.dumps(examples_list) | |
else: | |
examples_json = json.dumps([ | |
"Hello! How can you help me?", | |
"Tell me something interesting", | |
"What can you do?" | |
]) | |
# Process grounding URLs | |
grounding_urls = [] | |
for url in [url1, url2, url3, url4]: | |
if url and url.strip(): | |
grounding_urls.append(url.strip()) | |
# Create config | |
config = { | |
'name': name, | |
'description': description, | |
'system_prompt': system_prompt, | |
'model': model, | |
'api_key_var': api_key_var, | |
'temperature': temperature, | |
'max_tokens': int(max_tokens), | |
'examples': examples_json, | |
'grounding_urls': json.dumps(grounding_urls), | |
'access_code': access_code or "", | |
'enable_dynamic_urls': enable_dynamic_urls | |
} | |
# Generate files | |
app_content = SPACE_TEMPLATE.format(**config) | |
readme_content = create_readme(config) | |
requirements_content = create_requirements() | |
# Create zip file with clean naming | |
filename = f"{name.lower().replace(' ', '_').replace('-', '_')}.zip" | |
# Create zip in memory and save to disk | |
zip_buffer = io.BytesIO() | |
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file: | |
zip_file.writestr('app.py', app_content) | |
zip_file.writestr('requirements.txt', requirements_content) | |
zip_file.writestr('README.md', readme_content) | |
zip_file.writestr('config.json', json.dumps(config, indent=2)) | |
# Write zip to file | |
zip_buffer.seek(0) | |
with open(filename, 'wb') as f: | |
f.write(zip_buffer.getvalue()) | |
return filename | |
# Define callback functions outside the interface | |
def on_generate(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4): | |
if not name or not name.strip(): | |
return gr.update(value="Error: Please provide a Space Title", visible=True), gr.update(visible=False) | |
if not system_prompt or not system_prompt.strip(): | |
return gr.update(value="Error: Please provide a System Prompt", visible=True), gr.update(visible=False) | |
try: | |
filename = generate_zip(name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4) | |
success_msg = f"""**Deployment package ready!** | |
**File**: `{filename}` | |
**What's included:** | |
- `app.py` - Ready-to-deploy chat interface | |
- `requirements.txt` - Dependencies | |
- `README.md` - Step-by-step deployment guide | |
- `config.json` - Configuration backup | |
**Next steps:** | |
1. Download the zip file below | |
2. Follow the README instructions to deploy on HuggingFace Spaces | |
3. Set your `{api_key_var}` secret in Space settings | |
**Your Space will be live in minutes!**""" | |
return gr.update(value=success_msg, visible=True), gr.update(value=filename, visible=True) | |
except Exception as e: | |
return gr.update(value=f"Error: {str(e)}", visible=True), gr.update(visible=False) | |
# Global cache for URL content to avoid re-crawling | |
url_content_cache = {} | |
def get_cached_grounding_context(urls): | |
"""Get grounding context with caching to avoid re-crawling same URLs""" | |
if not urls: | |
return "" | |
# Filter valid URLs | |
valid_urls = [url for url in urls if url and url.strip()] | |
if not valid_urls: | |
return "" | |
# Create cache key from sorted URLs | |
cache_key = tuple(sorted(valid_urls)) | |
# Check if we already have this content cached | |
if cache_key in url_content_cache: | |
return url_content_cache[cache_key] | |
# If not cached, fetch using Crawl4AI | |
grounding_context = get_grounding_context_crawl4ai(valid_urls) | |
# Cache the result | |
url_content_cache[cache_key] = grounding_context | |
return grounding_context | |
def respond_with_cache_update(message, chat_history, url1="", url2="", url3="", url4=""): | |
"""Wrapper that updates cache status after responding""" | |
msg, history = respond(message, chat_history, url1, url2, url3, url4) | |
cache_status = get_cache_status() | |
return msg, history, cache_status | |
def respond(message, chat_history, url1="", url2="", url3="", url4=""): | |
# Make actual API request to OpenRouter | |
import os | |
import requests | |
# Get API key from environment | |
api_key = os.environ.get("OPENROUTER_API_KEY") | |
if not api_key: | |
response = "Please set your OPENROUTER_API_KEY in the Space settings to use the chat support." | |
chat_history.append([message, response]) | |
return "", chat_history | |
# Get grounding context from URLs using cached approach | |
grounding_urls = [url1, url2, url3, url4] | |
grounding_context = get_cached_grounding_context(grounding_urls) | |
# Build enhanced system prompt with grounding context | |
base_system_prompt = """You are an expert assistant specializing in Gradio configurations for HuggingFace Spaces. You have deep knowledge of: | |
- Gradio interface components and layouts | |
- HuggingFace Spaces configuration (YAML frontmatter, secrets, environment variables) | |
- Deployment best practices for Gradio apps on HuggingFace | |
- Space settings, SDK versions, and hardware requirements | |
- Troubleshooting common Gradio and HuggingFace Spaces issues | |
- Integration with various APIs and models through Gradio interfaces | |
Provide specific, technical guidance focused on Gradio implementation details and HuggingFace Spaces deployment. Include code examples when relevant. Keep responses concise and actionable.""" | |
enhanced_system_prompt = base_system_prompt + grounding_context | |
# Build conversation history for API | |
messages = [{ | |
"role": "system", | |
"content": enhanced_system_prompt | |
}] | |
# Add conversation history - Support both new messages format and legacy tuple format | |
for chat in chat_history: | |
if isinstance(chat, dict): | |
# New format: {"role": "user", "content": "..."} | |
messages.append(chat) | |
elif isinstance(chat, (list, tuple)) and len(chat) >= 2: | |
# Legacy format: ("user msg", "bot msg") | |
user_msg, assistant_msg = chat[0], chat[1] | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
# Add current message | |
messages.append({"role": "user", "content": message}) | |
try: | |
# Make API request to OpenRouter | |
response = requests.post( | |
url="https://openrouter.ai/api/v1/chat/completions", | |
headers={ | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
}, | |
json={ | |
"model": "google/gemini-2.0-flash-001", | |
"messages": messages, | |
"temperature": 0.7, | |
"max_tokens": 500 | |
} | |
) | |
if response.status_code == 200: | |
assistant_response = response.json()['choices'][0]['message']['content'] | |
else: | |
assistant_response = f"Error: {response.status_code} - {response.text}" | |
except Exception as e: | |
assistant_response = f"Error: {str(e)}" | |
chat_history.append({"role": "user", "content": message}) | |
chat_history.append({"role": "assistant", "content": assistant_response}) | |
return "", chat_history | |
def clear_chat(): | |
return "", [] | |
def clear_url_cache(): | |
"""Clear the URL content cache""" | |
global url_content_cache | |
url_content_cache.clear() | |
return "✅ URL cache cleared. Next request will re-fetch content." | |
def get_cache_status(): | |
"""Get current cache status""" | |
if not url_content_cache: | |
return "🔄 No URLs cached" | |
return f"💾 {len(url_content_cache)} URL set(s) cached" | |
def add_urls(count): | |
"""Show additional URL fields""" | |
if count == 2: | |
return (gr.update(visible=True), gr.update(visible=False), | |
gr.update(value="+ Add URLs"), gr.update(visible=True), 3) | |
elif count == 3: | |
return (gr.update(visible=True), gr.update(visible=True), | |
gr.update(value="Max URLs", interactive=False), gr.update(visible=True), 4) | |
else: | |
return (gr.update(), gr.update(), gr.update(), gr.update(), count) | |
def remove_urls(count): | |
"""Hide URL fields""" | |
if count == 4: | |
return (gr.update(visible=True), gr.update(visible=False, value=""), | |
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=True), 3) | |
elif count == 3: | |
return (gr.update(visible=False, value=""), gr.update(visible=False, value=""), | |
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=False), 2) | |
else: | |
return (gr.update(), gr.update(), gr.update(), gr.update(), count) | |
def add_chat_urls(count): | |
"""Show additional chat URL fields""" | |
if count == 2: | |
return (gr.update(visible=True), gr.update(visible=False), | |
gr.update(value="+ Add URLs"), gr.update(visible=True), 3) | |
elif count == 3: | |
return (gr.update(visible=True), gr.update(visible=True), | |
gr.update(value="Max URLs", interactive=False), gr.update(visible=True), 4) | |
else: | |
return (gr.update(), gr.update(), gr.update(), gr.update(), count) | |
def remove_chat_urls(count): | |
"""Hide chat URL fields""" | |
if count == 4: | |
return (gr.update(visible=True), gr.update(visible=False, value=""), | |
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=True), 3) | |
elif count == 3: | |
return (gr.update(visible=False, value=""), gr.update(visible=False, value=""), | |
gr.update(value="+ Add URLs", interactive=True), gr.update(visible=False), 2) | |
else: | |
return (gr.update(), gr.update(), gr.update(), gr.update(), count) | |
# Create Gradio interface with proper tab structure | |
with gr.Blocks(title="Chat U/I Helper") as demo: | |
with gr.Tabs(): | |
with gr.Tab("Spaces Configuration"): | |
gr.Markdown("# Spaces Configuration") | |
gr.Markdown("Convert custom assistants from HuggingChat into chat interfaces with HuggingFace Spaces. Configure and download everything needed to deploy a simple HF space using Gradio.") | |
with gr.Column(): | |
name = gr.Textbox( | |
label="Space Title", | |
placeholder="My Course Helper", | |
value="My Custom Space" | |
) | |
description = gr.Textbox( | |
label="Space Description", | |
placeholder="A customizable AI chat interface for...", | |
lines=2, | |
value="An AI research assistant tailored for academic inquiry and scholarly dialogue" | |
) | |
model = gr.Dropdown( | |
label="Model", | |
choices=MODELS, | |
value=MODELS[0], | |
info="Choose based on your needs and budget" | |
) | |
api_key_var = gr.Textbox( | |
label="API Key Variable Name", | |
value="OPENROUTER_API_KEY", | |
info="Name for the secret in HuggingFace Space settings" | |
) | |
access_code = gr.Textbox( | |
label="Access Code (Optional)", | |
placeholder="Leave empty for public access, or enter code for student access", | |
info="If set, students must enter this code to access the chatbot", | |
type="password" | |
) | |
system_prompt = gr.Textbox( | |
label="System Prompt", | |
placeholder="You are a research assistant...", | |
lines=4, | |
value="You are a research assistant that provides link-grounded information through Crawl4AI web fetching. Use MLA documentation for parenthetical citations and bibliographic entries, and ground all responses in provided URL contexts and any additional URLs you're instructed to fetch." | |
) | |
enable_dynamic_urls = gr.Checkbox( | |
label="Enable Dynamic URL Fetching", | |
value=False, | |
info="Allow the assistant to fetch additional URLs mentioned in conversations (uses Crawl4AI)" | |
) | |
examples_text = gr.Textbox( | |
label="Example Prompts (one per line)", | |
placeholder="Can you analyze this research paper: https://example.com/paper.pdf\nWhat are the latest findings on climate change adaptation?\nHelp me fact-check claims about renewable energy efficiency", | |
lines=3, | |
info="These will appear as clickable examples in the chat interface" | |
) | |
with gr.Accordion("URL Grounding (Optional)", open=False): | |
gr.Markdown("Add URLs to provide context. Content will be fetched and added to the system prompt.") | |
# Initial URL fields | |
url1 = gr.Textbox( | |
label="URL 1", | |
placeholder="https://example.com/page1", | |
info="First URL for context grounding" | |
) | |
url2 = gr.Textbox( | |
label="URL 2", | |
placeholder="https://example.com/page2", | |
info="Second URL for context grounding" | |
) | |
# Additional URL fields (initially hidden) | |
url3 = gr.Textbox( | |
label="URL 3", | |
placeholder="https://example.com/page3", | |
info="Third URL for context grounding", | |
visible=False | |
) | |
url4 = gr.Textbox( | |
label="URL 4", | |
placeholder="https://example.com/page4", | |
info="Fourth URL for context grounding", | |
visible=False | |
) | |
# URL management buttons | |
with gr.Row(): | |
add_url_btn = gr.Button("+ Add URLs", size="sm") | |
remove_url_btn = gr.Button("- Remove URLs", size="sm", visible=False) | |
url_count = gr.State(2) # Track number of visible URLs | |
with gr.Row(): | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0, | |
maximum=2, | |
value=0.7, | |
step=0.1, | |
info="Higher = more creative, Lower = more focused" | |
) | |
max_tokens = gr.Slider( | |
label="Max Response Tokens", | |
minimum=50, | |
maximum=4096, | |
value=500, | |
step=50 | |
) | |
generate_btn = gr.Button("Generate Deployment Package", variant="primary") | |
status = gr.Markdown(visible=False) | |
download_file = gr.File(label="Download your zip package", visible=False) | |
# Connect the URL management buttons | |
add_url_btn.click( | |
add_urls, | |
inputs=[url_count], | |
outputs=[url3, url4, add_url_btn, remove_url_btn, url_count] | |
) | |
remove_url_btn.click( | |
remove_urls, | |
inputs=[url_count], | |
outputs=[url3, url4, add_url_btn, remove_url_btn, url_count] | |
) | |
# Connect the generate button | |
generate_btn.click( | |
on_generate, | |
inputs=[name, description, system_prompt, model, api_key_var, temperature, max_tokens, examples_text, access_code, enable_dynamic_urls, url1, url2, url3, url4], | |
outputs=[status, download_file] | |
) | |
with gr.Tab("Chat Support"): | |
gr.Markdown("# Chat Support") | |
gr.Markdown("Get personalized guidance on configuring chat assistants as HuggingFace Spaces for educational & research purposes.") | |
# Meta chat interface | |
with gr.Column(): | |
chatbot = gr.Chatbot( | |
value=[], | |
label="Chat Support Assistant", | |
height=400, | |
type="messages" | |
) | |
msg = gr.Textbox( | |
label="Ask about configuring chat UIs for courses, research, or custom HuggingFace Spaces", | |
placeholder="How can I configure a chat UI for my senior seminar?", | |
lines=2 | |
) | |
with gr.Accordion("URL Grounding (Optional)", open=False): | |
gr.Markdown("Add URLs to provide additional context for more informed responses") | |
chat_url1 = gr.Textbox( | |
label="URL 1", | |
value="https://huggingface.co/docs/hub/en/spaces-overview", | |
info="HuggingFace Spaces Overview" | |
) | |
chat_url2 = gr.Textbox( | |
label="URL 2", | |
value="", | |
placeholder="https://example.com/page2", | |
info="Additional context URL" | |
) | |
# Additional URL fields for chat (initially hidden) | |
chat_url3 = gr.Textbox( | |
label="URL 3", | |
placeholder="https://example.com/page3", | |
info="Additional context URL", | |
visible=False | |
) | |
chat_url4 = gr.Textbox( | |
label="URL 4", | |
placeholder="https://example.com/page4", | |
info="Additional context URL", | |
visible=False | |
) | |
# Chat URL management buttons | |
with gr.Row(): | |
add_chat_url_btn = gr.Button("+ Add URLs", size="sm") | |
remove_chat_url_btn = gr.Button("- Remove URLs", size="sm", visible=False) | |
chat_url_count = gr.State(2) # Track number of visible chat URLs | |
# Cache controls | |
with gr.Row(): | |
cache_status = gr.Markdown("🔄 No URLs cached") | |
clear_cache_btn = gr.Button("Clear URL Cache", size="sm") | |
with gr.Row(): | |
submit = gr.Button("Send", variant="primary") | |
clear = gr.Button("Clear") | |
gr.Examples( | |
examples=[ | |
"How do I set up a course assistant?", | |
"Which model should I use?", | |
"What's a good system prompt?", | |
"Why Gradio? What is it?", | |
"How do I customize the chat interface?", | |
"Can you help me troubleshoot?", | |
], | |
inputs=msg | |
) | |
# Connect the chat URL management buttons | |
add_chat_url_btn.click( | |
add_chat_urls, | |
inputs=[chat_url_count], | |
outputs=[chat_url3, chat_url4, add_chat_url_btn, remove_chat_url_btn, chat_url_count] | |
) | |
remove_chat_url_btn.click( | |
remove_chat_urls, | |
inputs=[chat_url_count], | |
outputs=[chat_url3, chat_url4, add_chat_url_btn, remove_chat_url_btn, chat_url_count] | |
) | |
# Connect cache controls | |
clear_cache_btn.click(clear_url_cache, outputs=[cache_status]) | |
# Connect the chat functionality | |
submit.click(respond_with_cache_update, [msg, chatbot, chat_url1, chat_url2, chat_url3, chat_url4], [msg, chatbot, cache_status]) | |
msg.submit(respond_with_cache_update, [msg, chatbot, chat_url1, chat_url2, chat_url3, chat_url4], [msg, chatbot, cache_status]) | |
clear.click(clear_chat, outputs=[msg, chatbot]) | |
if __name__ == "__main__": | |
demo.launch(share=True) |