File size: 23,290 Bytes
836388f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Standard library imports
import logging
import re
from typing import List, Dict, Set, Tuple, Optional, Union, Any
from functools import lru_cache

# Configure logging
logging.basicConfig(level=logging.INFO, 
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class LanguageDetector:
    """
    A language detection system that provides balanced detection across multiple languages
    using an enhanced statistical approach.
    """
    
    def __init__(self):
        """Initialize the language detector with statistical language models"""
        logger.info("Initializing language detector with statistical models")
        
        # Initialize language indicators dictionary for statistical detection
        self._init_language_indicators()
        # Set thresholds for language detection confidence
        self.single_lang_confidence = 65  # Minimum score to consider a language detected
        self.secondary_lang_threshold = 0.75  # Secondary language must be at least this fraction of primary score
        
    def _init_language_indicators(self):
        """Initialize language indicators for statistical detection with historical markers"""
        # Define indicators for all supported languages with equal detail level
        # Each language has:
        # - Distinctive characters
        # - Common words (including historical forms)
        # - N-grams (character sequences)
        # - Historical markers specific to older forms of the language
        self.language_indicators = {
            "English": {
                "chars": [],  # English uses basic Latin alphabet without special chars
                "words": ['the', 'and', 'of', 'to', 'in', 'a', 'is', 'that', 'for', 'it', 
                         'with', 'as', 'be', 'on', 'by', 'at', 'this', 'have', 'from', 'or',
                         'an', 'but', 'not', 'what', 'all', 'were', 'when', 'we', 'there', 'can',
                         'would', 'who', 'you', 'been', 'one', 'their', 'has', 'more', 'if', 'no'],
                "ngrams": ['th', 'he', 'in', 'er', 'an', 're', 'on', 'at', 'en', 'nd', 'ti', 'es', 'or',
                          'ing', 'tion', 'the', 'and', 'tha', 'ent', 'ion'],
                "historical": {
                    "chars": ['þ', 'ȝ', 'æ', 'ſ'],  # Thorn, yogh, ash, long s
                    "words": ['thou', 'thee', 'thy', 'thine', 'hath', 'doth', 'ere', 'whilom', 'betwixt',
                             'ye', 'art', 'wast', 'dost', 'hast', 'shalt', 'mayst', 'verily'],
                    "patterns": ['eth$', '^y[^a-z]', 'ck$', 'aught', 'ought']  # -eth endings, y- prefixes
                }
            },
            "French": {
                "chars": ['é', 'è', 'ê', 'à', 'ç', 'ù', 'â', 'î', 'ô', 'û', 'ë', 'ï', 'ü'],
                "words": ['le', 'la', 'les', 'et', 'en', 'de', 'du', 'des', 'un', 'une', 'ce', 'cette', 
                         'ces', 'dans', 'par', 'pour', 'sur', 'qui', 'que', 'quoi', 'où', 'quand', 'comment',
                         'est', 'sont', 'ont', 'nous', 'vous', 'ils', 'elles', 'avec', 'sans', 'mais', 'ou'],
                "ngrams": ['es', 'le', 'de', 'en', 'on', 'nt', 'qu', 'ai', 'an', 'ou', 'ur', 're', 'me',
                          'les', 'ent', 'que', 'des', 'ons', 'ant', 'ion'],
                "historical": {
                    "chars": ['ſ', 'æ', 'œ'],  # Long s and ligatures
                    "words": ['aultre', 'avecq', 'icelluy', 'oncques', 'moult', 'estre', 'mesme', 'ceste', 
                             'ledict', 'celuy', 'ceulx', 'aulcun', 'ainſi', 'touſiours', 'eſtre',
                             'eſt', 'meſme', 'felon', 'auec', 'iufques', 'chofe', 'fcience'],
                    "patterns": ['oi[ts]$', 'oi[re]$', 'f[^aeiou]', 'ff', 'ſ', 'auoit', 'eſtoit', 
                                'ſi', 'ſur', 'ſa', 'cy', 'ayant', 'oy', 'uſ', 'auſ']
                },
            },
            "German": {
                "chars": ['ä', 'ö', 'ü', 'ß'],
                "words": ['der', 'die', 'das', 'und', 'in', 'zu', 'den', 'ein', 'eine', 'mit', 'ist', 'von', 
                         'des', 'sich', 'auf', 'für', 'als', 'auch', 'werden', 'bei', 'durch', 'aus', 'sind',
                         'nicht', 'nur', 'wurde', 'wie', 'wenn', 'aber', 'noch', 'nach', 'so', 'sein', 'über'],
                "ngrams": ['en', 'er', 'ch', 'de', 'ei', 'in', 'te', 'nd', 'ie', 'ge', 'un', 'sch', 'ich',
                          'den', 'die', 'und', 'der', 'ein', 'ung', 'cht'],
                "historical": {
                    "chars": ['ſ', 'ů', 'ė', 'ÿ'],
                    "words": ['vnnd', 'vnnd', 'vnter', 'vnd', 'seyn', 'thun', 'auff', 'auß', 'deß', 'diß'],
                    "patterns": ['^v[nd]', 'th', 'vnter', 'ſch']
                }
            },
            "Spanish": {
                "chars": ['á', 'é', 'í', 'ó', 'ú', 'ñ', 'ü', '¿', '¡'],
                "words": ['el', 'la', 'los', 'las', 'de', 'en', 'y', 'a', 'que', 'por', 'un', 'una', 'no', 
                         'es', 'con', 'para', 'su', 'al', 'se', 'del', 'como', 'más', 'pero', 'lo', 'mi',
                         'si', 'ya', 'todo', 'esta', 'cuando', 'hay', 'muy', 'bien', 'sin', 'así'],
                "ngrams": ['de', 'en', 'os', 'es', 'la', 'ar', 'el', 'er', 'ra', 'as', 'an', 'do', 'or',
                          'que', 'nte', 'los', 'ado', 'con', 'ent', 'ien'],
                "historical": {
                    "chars": ['ſ', 'ç', 'ñ'],
                    "words": ['facer', 'fijo', 'fermoso', 'agora', 'asaz', 'aver', 'caſa', 'deſde', 'eſte', 
                             'eſta', 'eſto', 'deſto', 'deſta', 'eſſo', 'muger', 'dixo', 'fazer'],
                    "patterns": ['^f[aei]', 'ſſ', 'ſc', '^deſ', 'xo$', 'xe$']
                },
            },
            "Italian": {
                "chars": ['à', 'è', 'é', 'ì', 'í', 'ò', 'ó', 'ù', 'ú'],
                "words": ['il', 'la', 'i', 'le', 'e', 'di', 'a', 'in', 'che', 'non', 'per', 'con', 'un', 
                         'una', 'del', 'della', 'è', 'sono', 'da', 'si', 'come', 'anche', 'più', 'ma', 'ci',
                         'se', 'ha', 'mi', 'lo', 'ti', 'al', 'tu', 'questo', 'questi'],
                "ngrams": ['di', 'la', 'er', 'to', 're', 'co', 'de', 'in', 'ra', 'on', 'li', 'no', 'ri',
                          'che', 'ent', 'con', 'per', 'ion', 'ato', 'lla']
            },
            "Portuguese": {
                "chars": ['á', 'â', 'ã', 'à', 'é', 'ê', 'í', 'ó', 'ô', 'õ', 'ú', 'ç'],
                "words": ['o', 'a', 'os', 'as', 'de', 'em', 'e', 'do', 'da', 'dos', 'das', 'no', 'na', 
                         'para', 'que', 'um', 'uma', 'por', 'com', 'se', 'não', 'mais', 'como', 'mas',
                         'você', 'eu', 'este', 'isso', 'ele', 'seu', 'sua', 'ou', 'já', 'me'],
                "ngrams": ['de', 'os', 'em', 'ar', 'es', 'ra', 'do', 'da', 'en', 'co', 'nt', 'ad', 'to',
                          'que', 'nto', 'ent', 'com', 'ção', 'ado', 'ment']
            },
            "Dutch": {
                "chars": ['ë', 'ï', 'ö', 'ü', 'é', 'è', 'ê', 'ç', 'á', 'à', 'ä', 'ó', 'ô', 'ú', 'ù', 'û', 'ij'],
                "words": ['de', 'het', 'een', 'en', 'van', 'in', 'is', 'dat', 'op', 'te', 'zijn', 'met', 
                         'voor', 'niet', 'aan', 'er', 'die', 'maar', 'dan', 'ik', 'je', 'hij', 'zij', 'we',
                         'kunnen', 'wordt', 'nog', 'door', 'over', 'als', 'uit', 'bij', 'om', 'ook'],
                "ngrams": ['en', 'de', 'er', 'ee', 'ge', 'an', 'aa', 'in', 'te', 'et', 'ng', 'ee', 'or',
                          'van', 'het', 'een', 'ing', 'ver', 'den', 'sch']
            },
            "Russian": {
                # Russian (Cyrillic alphabet) characters
                "chars": ['а', 'б', 'в', 'г', 'д', 'е', 'ё', 'ж', 'з', 'и', 'й', 'к', 'л', 'м', 'н', 'о', 'п', 
                         'р', 'с', 'т', 'у', 'ф', 'х', 'ц', 'ч', 'ш', 'щ', 'ъ', 'ы', 'ь', 'э', 'ю', 'я'],
                "words": ['и', 'в', 'не', 'на', 'что', 'я', 'с', 'а', 'то', 'он', 'как', 'этот', 'по', 
                         'но', 'из', 'к', 'у', 'за', 'вы', 'все', 'так', 'же', 'от', 'для', 'о', 'его',
                         'мы', 'было', 'она', 'бы', 'мне', 'еще', 'есть', 'быть', 'был'],
                "ngrams": ['о', 'е', 'а', 'н', 'и', 'т', 'р', 'с', 'в', 'л', 'к', 'м', 'д', 
                          'ст', 'но', 'то', 'ни', 'на', 'по', 'ет']
            },
            "Chinese": {
                "chars": ['的', '是', '不', '了', '在', '和', '有', '我', '们', '人', '这', '上', '中', 
                         '个', '大', '来', '到', '国', '时', '要', '地', '出', '会', '可', '也', '就', 
                         '年', '生', '对', '能', '自', '那', '都', '得', '说', '过', '子', '家', '后', '多'],
                # Chinese doesn't have "words" in the same way as alphabetic languages
                "words": ['的', '是', '不', '了', '在', '和', '有', '我', '们', '人', '这', '上', '中', 
                         '个', '大', '来', '到', '国', '时', '要', '地', '出', '会', '可', '也', '就'],
                "ngrams": ['的', '是', '不', '了', '在', '我', '有', '和', '人', '这', '中', '大', '来', '上',
                          '国', '个', '到', '说', '们', '为']
            },
            "Japanese": {
                # A mix of hiragana, katakana, and common kanji
                "chars": ['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', 'け', 'こ', 'さ', 'し', 'す', 'せ', 'そ',
                         'ア', 'イ', 'ウ', 'エ', 'オ', 'カ', 'キ', 'ク', 'ケ', 'コ', 'サ', 'シ', 'ス', 'セ', 'ソ',
                         '日', '本', '人', '大', '小', '中', '山', '川', '田', '子', '女', '男', '月', '火', '水'],
                "words": ['は', 'を', 'に', 'の', 'が', 'で', 'へ', 'から', 'より', 'まで', 'だ', 'です', 'した',
                         'ます', 'ません', 'です', 'これ', 'それ', 'あれ', 'この', 'その', 'あの', 'わたし'],
                "ngrams": ['の', 'は', 'た', 'が', 'を', 'に', 'て', 'で', 'と', 'し', 'か', 'ま', 'こ', 'い',
                          'する', 'いる', 'れる', 'なる', 'れて', 'した']
            },
            "Korean": {
                "chars": ['가', '나', '다', '라', '마', '바', '사', '아', '자', '차', '카', '타', '파', '하',
                         '그', '는', '을', '이', '에', '에서', '로', '으로', '와', '과', '또는', '하지만'],
                "words": ['이', '그', '저', '나', '너', '우리', '그들', '이것', '그것', '저것', '은', '는',
                         '이', '가', '을', '를', '에', '에서', '으로', '로', '와', '과', '의', '하다', '되다'],
                "ngrams": ['이', '다', '는', '에', '하', '고', '지', '서', '의', '가', '을', '로', '을', '으',
                          '니다', '습니', '하는', '이다', '에서', '하고']
            },
            "Arabic": {
                "chars": ['ا', 'ب', 'ت', 'ث', 'ج', 'ح', 'خ', 'د', 'ذ', 'ر', 'ز', 'س', 'ش', 'ص', 'ض',
                         'ط', 'ظ', 'ع', 'غ', 'ف', 'ق', 'ك', 'ل', 'م', 'ن', 'ه', 'و', 'ي', 'ء', 'ة', 'ى'],
                "words": ['في', 'من', 'على', 'إلى', 'هذا', 'هذه', 'ذلك', 'تلك', 'هو', 'هي', 'هم', 'أنا',
                         'أنت', 'نحن', 'كان', 'كانت', 'يكون', 'لا', 'لم', 'ما', 'أن', 'و', 'أو', 'ثم', 'بعد'],
                "ngrams": ['ال', 'ان', 'في', 'من', 'ون', 'ين', 'ات', 'ار', 'ور', 'ما', 'لا', 'ها', 'ان',
                          'الم', 'لان', 'علا', 'الح', 'الس', 'الع', 'الت']
            },
            "Hindi": {
                "chars": ['अ', 'आ', 'इ', 'ई', 'उ', 'ऊ', 'ए', 'ऐ', 'ओ', 'औ', 'क', 'ख', 'ग', 'घ', 'ङ',
                         'च', 'छ', 'ज', 'झ', 'ञ', 'ट', 'ठ', 'ड', 'ढ', 'ण', 'त', 'थ', 'द', 'ध', 'न',
                         'प', 'फ', 'ब', 'भ', 'म', 'य', 'र', 'ल', 'व', 'श', 'ष', 'स', 'ह', 'ा', 'ि', 'ी',
                         'ु', 'ू', 'े', 'ै', 'ो', 'ौ', '्', 'ं', 'ः'],
                "words": ['और', 'का', 'के', 'की', 'एक', 'में', 'है', 'यह', 'हैं', 'से', 'को', 'पर', 'इस',
                         'हो', 'गया', 'कर', 'मैं', 'या', 'हुआ', 'था', 'वह', 'अपने', 'सकता', 'ने', 'बहुत'],
                "ngrams": ['का', 'के', 'की', 'है', 'ने', 'से', 'मे', 'को', 'पर', 'हा', 'रा', 'ता', 'या',
                          'ार', 'ान', 'कार', 'राज', 'ारा', 'जाए', 'ेजा']
            },
            "Latin": {
                "chars": [],  # Latin uses basic Latin alphabet
                "words": ['et', 'in', 'ad', 'est', 'sunt', 'non', 'cum', 'sed', 'qui', 'quod', 'ut', 'si',
                         'nec', 'ex', 'per', 'quam', 'pro', 'iam', 'hoc', 'aut', 'esse', 'enim', 'de', 
                         'atque', 'ac', 'ante', 'post', 'sub', 'ab'],
                "ngrams": ['us', 'is', 'um', 'er', 'it', 'nt', 'am', 'em', 're', 'at', 'ti', 'es', 'ur',
                          'tur', 'que', 'ere', 'ent', 'ius', 'rum', 'tus']
            },
            "Greek": {
                "chars": ['α', 'β', 'γ', 'δ', 'ε', 'ζ', 'η', 'θ', 'ι', 'κ', 'λ', 'μ', 'ν', 'ξ', 'ο', 'π',
                         'ρ', 'σ', 'ς', 'τ', 'υ', 'φ', 'χ', 'ψ', 'ω', 'ά', 'έ', 'ή', 'ί', 'ό', 'ύ', 'ώ'],
                "words": ['και', 'του', 'της', 'των', 'στο', 'στη', 'με', 'από', 'για', 'είναι', 'να', 
                         'ότι', 'δεν', 'στον', 'μια', 'που', 'ένα', 'έχει', 'θα', 'το', 'ο', 'η', 'τον'],
                "ngrams": ['αι', 'τα', 'ου', 'τη', 'οι', 'το', 'ης', 'αν', 'ος', 'ον', 'ις', 'ει', 'ερ',
                          'και', 'την', 'τον', 'ους', 'νου', 'εντ', 'μεν']
            }
        }
                
    def detect_languages(self, text: str, filename: str = None, current_languages: List[str] = None) -> List[str]:
        """
        Detect languages in text using an enhanced statistical approach
        
        Args:
            text: Text to analyze
            filename: Optional filename to provide additional context
            current_languages: Optional list of languages already detected
            
        Returns:
            List of detected languages
        """
        logger = logging.getLogger("language_detector")
        
        # If no text provided, return current languages or default
        if not text or len(text.strip()) < 10:
            return current_languages if current_languages else ["English"]
        
        # If we already have detected languages, use them
        if current_languages and len(current_languages) > 0:
            logger.info(f"Using already detected languages: {current_languages}")
            return current_languages
        
        # Use enhanced statistical detection
        detected_languages = self._detect_statistically(text, filename)
        logger.info(f"Statistical language detection results: {detected_languages}")
        return detected_languages
    
    def _detect_statistically(self, text: str, filename: str = None) -> List[str]:
        """
        Detect languages using enhanced statistical analysis with historical language indicators
        
        Args:
            text: Text to analyze
            filename: Optional filename for additional context
            
        Returns:
            List of detected languages
        """
        logger = logging.getLogger("language_detector")
        
        # Normalize text to lowercase for consistent analysis
        text_lower = text.lower()
        words = re.findall(r'\b\w+\b', text_lower)  # Extract words
        
        # Score each language based on characters, words, n-grams, and historical markers
        language_scores = {}
        historical_bonus = {}
        
        # PHASE 1: Special character analysis
        # Count special characters for each language
        special_char_counts = {}
        total_special_chars = 0
        
        for language, indicators in self.language_indicators.items():
            chars = indicators["chars"]
            count = 0
            for char in chars:
                if char in text_lower:
                    count += text_lower.count(char)
            special_char_counts[language] = count
            total_special_chars += count
        
        # Normalize character scores (0-30 points)
        for language, count in special_char_counts.items():
            if total_special_chars > 0:
                # Scale score to 0-30 range (reduced from 35 to make room for historical)
                normalized_score = (count / total_special_chars) * 30
                language_scores[language] = normalized_score
            else:
                language_scores[language] = 0
        
        # PHASE 2: Word analysis (0-30 points)
        # Count common words for each language
        for language, indicators in self.language_indicators.items():
            word_list = indicators["words"]
            word_matches = sum(1 for word in words if word in word_list)
            
            # Normalize word score based on text length and word list size
            word_score_factor = min(1.0, word_matches / (len(words) * 0.1))  # Max 1.0 if 10% match
            language_scores[language] = language_scores.get(language, 0) + (word_score_factor * 30)
        
        # PHASE 3: N-gram analysis (0-20 points)
        for language, indicators in self.language_indicators.items():
            ngram_list = indicators["ngrams"]
            ngram_matches = 0
            
            # Count ngram occurrences
            for ngram in ngram_list:
                ngram_matches += text_lower.count(ngram)
            
            # Normalize ngram score based on text length
            if len(text_lower) > 0:
                ngram_score_factor = min(1.0, ngram_matches / (len(text_lower) * 0.05))  # Max 1.0 if 5% match
                language_scores[language] = language_scores.get(language, 0) + (ngram_score_factor * 20)
        
        # PHASE 4: Historical language markers (0-20 points)
        for language, indicators in self.language_indicators.items():
            if "historical" in indicators:
                historical_indicators = indicators["historical"]
                historical_score = 0
                
                # Check for historical chars
                if "chars" in historical_indicators:
                    for char in historical_indicators["chars"]:
                        if char in text_lower:
                            historical_score += text_lower.count(char) * 0.5
                
                # Check for historical words
                if "words" in historical_indicators:
                    hist_words = historical_indicators["words"]
                    hist_word_matches = sum(1 for word in words if word in hist_words)
                    if hist_word_matches > 0:
                        # Historical words are strong indicators
                        historical_score += min(10, hist_word_matches * 2)
                
                # Check for historical patterns
                if "patterns" in historical_indicators:
                    for pattern in historical_indicators["patterns"]:
                        matches = len(re.findall(pattern, text_lower))
                        if matches > 0:
                            historical_score += min(5, matches * 0.5)
                
                # Cap historical score at 20 points
                historical_score = min(20, historical_score)
                historical_bonus[language] = historical_score
                
                # Apply historical bonus
                language_scores[language] += historical_score
                
                # Apply language-specific exclusivity multiplier if present
                if "exclusivity" in indicators:
                    exclusivity = indicators["exclusivity"]
                    language_scores[language] *= exclusivity
                    logger.info(f"Applied exclusivity multiplier {exclusivity} to {language}")
        
        # Print historical bonus for debugging
        for language, bonus in historical_bonus.items():
            if bonus > 0:
                logger.info(f"Historical language bonus for {language}: {bonus} points")
        
        # Final language selection with more stringent criteria
        # Get languages with scores above threshold
        threshold = self.single_lang_confidence  # Higher minimum score
        candidates = [(lang, score) for lang, score in language_scores.items() if score >= threshold]
        candidates.sort(key=lambda x: x[1], reverse=True)
        
        logger.info(f"Language candidates: {candidates}")
        
        # If we have candidate languages, return top 1-2 with higher threshold for secondary
        if candidates:
            # Always take top language
            result = [candidates[0][0]]
            
            # Add second language only if it's significantly strong compared to primary
            # and doesn't have a historical/exclusivity conflict
            if len(candidates) > 1:
                primary_lang = candidates[0][0]
                secondary_lang = candidates[1][0]
                primary_score = candidates[0][1]
                secondary_score = candidates[1][1]
                
                # Only add secondary if it meets threshold and doesn't conflict
                ratio = secondary_score / primary_score
                
                # Check for French and Spanish conflict (historical French often gets misidentified)
                historical_conflict = False
                if (primary_lang == "French" and secondary_lang == "Spanish" and 
                    historical_bonus.get("French", 0) > 5):
                    historical_conflict = True
                    logger.info("Historical French markers detected, suppressing Spanish detection")
                
                if ratio >= self.secondary_lang_threshold and not historical_conflict:
                    result.append(secondary_lang)
                    logger.info(f"Added secondary language {secondary_lang} (score ratio: {ratio:.2f})")
                else:
                    logger.info(f"Rejected secondary language {secondary_lang} (score ratio: {ratio:.2f})")
                
            return result
        
        # Default to English if no clear signals