File size: 50,893 Bytes
c04ffe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dd2ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04ffe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dc069
 
c04ffe5
42dc069
 
c04ffe5
 
42dc069
 
 
 
c04ffe5
 
42dc069
c04ffe5
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04ffe5
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73375a3
 
 
 
 
 
 
 
 
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04ffe5
42dc069
c04ffe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dc069
 
c04ffe5
 
 
 
 
 
 
 
 
 
42dc069
 
 
 
 
c04ffe5
42dc069
 
 
 
 
 
c04ffe5
42dc069
 
c04ffe5
42dc069
 
c04ffe5
 
 
 
 
 
 
42dc069
c04ffe5
42dc069
 
c04ffe5
 
 
42dc069
 
c04ffe5
 
42dc069
c04ffe5
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04ffe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dc069
 
 
 
 
 
 
 
c04ffe5
 
 
42dc069
c04ffe5
 
 
 
 
42dc069
c04ffe5
 
 
42dc069
c04ffe5
 
42dc069
c04ffe5
42dc069
c04ffe5
 
 
 
42dc069
c04ffe5
 
 
42dc069
c04ffe5
42dc069
c04ffe5
 
 
42dc069
 
 
 
 
 
c04ffe5
 
 
 
 
42dc069
c04ffe5
42dc069
c04ffe5
 
42dc069
c04ffe5
 
 
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04ffe5
 
42dc069
c04ffe5
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
c04ffe5
 
 
42dc069
c04ffe5
 
 
 
 
 
 
 
 
 
 
 
 
42dc069
 
 
 
 
 
 
 
 
 
c04ffe5
42dc069
c04ffe5
42dc069
 
 
 
 
c04ffe5
42dc069
 
c04ffe5
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04ffe5
42dc069
 
c04ffe5
42dc069
c04ffe5
42dc069
 
 
 
 
 
c04ffe5
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04ffe5
42dc069
c04ffe5
42dc069
 
 
 
c04ffe5
42dc069
 
 
 
 
 
c04ffe5
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04ffe5
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04ffe5
42dc069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
"""
Utility functions for OCR image processing with Mistral AI.
Contains helper functions for working with OCR responses and image handling.
"""

# Standard library imports
import json
import base64
import io
import zipfile
import logging
import re
import time
import math
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional, Union, Any, Tuple
from functools import lru_cache

# Configure logging
logging.basicConfig(level=logging.INFO, 
                   format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Third-party imports
import numpy as np

# Mistral AI imports
from mistralai import DocumentURLChunk, ImageURLChunk, TextChunk
from mistralai.models import OCRImageObject

# Check for image processing libraries
try:
    from PIL import Image, ImageEnhance, ImageFilter, ImageOps
    PILLOW_AVAILABLE = True
except ImportError:
    logger.warning("PIL not available - image preprocessing will be limited")
    PILLOW_AVAILABLE = False

try:
    import cv2
    CV2_AVAILABLE = True
except ImportError:
    logger.warning("OpenCV (cv2) not available - advanced image processing will be limited")
    CV2_AVAILABLE = False

# Import configuration
try:
    from config import IMAGE_PREPROCESSING
except ImportError:
    # Fallback defaults if config not available
    IMAGE_PREPROCESSING = {
        "enhance_contrast": 1.5,
        "sharpen": True,
        "denoise": True,
        "max_size_mb": 8.0,
        "target_dpi": 300,
        "compression_quality": 92
    }

def detect_skew(image: Union[Image.Image, np.ndarray]) -> float:
    """
    Quick skew detection that returns angle in degrees.
    Uses a computationally efficient approach by analyzing at 1% resolution.

    Args:
        image: PIL Image or numpy array

    Returns:
        Estimated skew angle in degrees (positive or negative)
    """
    # Convert PIL Image to numpy array if needed
    if isinstance(image, Image.Image):
        # Convert to grayscale for processing
        if image.mode != 'L':
            img_np = np.array(image.convert('L'))
        else:
            img_np = np.array(image)
    else:
        # If already numpy array, ensure it's grayscale
        if len(image.shape) == 3:
            if CV2_AVAILABLE:
                img_np = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
            else:
                # Fallback grayscale conversion
                img_np = np.mean(image, axis=2).astype(np.uint8)
        else:
            img_np = image
    
    # Downsample to 1% resolution for faster processing
    height, width = img_np.shape
    target_size = int(min(width, height) * 0.01)
    
    # Use a sane minimum size and ensure we have enough pixels to detect lines
    target_size = max(target_size, 100)
    
    if CV2_AVAILABLE:
        # OpenCV-based implementation (faster)
        # Resize the image to the target size
        scale_factor = target_size / max(width, height)
        small_img = cv2.resize(img_np, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_AREA)
        
        # Apply binary thresholding to get cleaner edges
        _, binary = cv2.threshold(small_img, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
        
        # Use Hough Line Transform to detect lines
        lines = cv2.HoughLinesP(binary, 1, np.pi/180, threshold=target_size//10, 
                             minLineLength=target_size//5, maxLineGap=target_size//10)
        
        if lines is None or len(lines) < 3:
            # Not enough lines detected, assume no significant skew
            return 0.0
        
        # Calculate angles of lines
        angles = []
        for line in lines:
            x1, y1, x2, y2 = line[0]
            if x2 - x1 == 0:  # Avoid division by zero
                continue
            angle = math.atan2(y2 - y1, x2 - x1) * 180.0 / np.pi
            
            # Normalize angle to -45 to 45 range
            angle = angle % 180
            if angle > 90:
                angle -= 180
            if angle > 45:
                angle -= 90
            if angle < -45:
                angle += 90
                
            angles.append(angle)
        
        if not angles:
            return 0.0
            
        # Use median to reduce impact of outliers
        angles.sort()
        median_angle = angles[len(angles) // 2]
        
        return median_angle
    else:
        # PIL-only fallback implementation
        # Resize using PIL
        small_img = Image.fromarray(img_np).resize(
            (int(width * target_size / max(width, height)), 
             int(height * target_size / max(width, height))),
            Image.NEAREST
        )
        
        # Find edges
        edges = small_img.filter(ImageFilter.FIND_EDGES)
        edges_data = np.array(edges)
        
        # Simple edge orientation analysis (less precise than OpenCV)
        # Count horizontal vs vertical edges
        h_edges = np.sum(np.abs(np.diff(edges_data, axis=1)))
        v_edges = np.sum(np.abs(np.diff(edges_data, axis=0)))
        
        # If horizontal edges dominate, no significant skew
        if h_edges > v_edges * 1.2:
            return 0.0
            
        # Simple angle estimation based on edge distribution
        # This is a simplified approach that works for slight skews
        rows, cols = edges_data.shape
        xs, ys = [], []
        
        # Sample strong edge points
        for r in range(0, rows, 2):
            for c in range(0, cols, 2):
                if edges_data[r, c] > 128:
                    xs.append(c)
                    ys.append(r)
                    
        if len(xs) < 10:  # Not enough edge points
            return 0.0
            
        # Use simple linear regression to estimate the slope
        n = len(xs)
        mean_x = sum(xs) / n
        mean_y = sum(ys) / n
        
        # Calculate slope
        numerator = sum((xs[i] - mean_x) * (ys[i] - mean_y) for i in range(n))
        denominator = sum((xs[i] - mean_x) ** 2 for i in range(n))
        
        if abs(denominator) < 1e-6:  # Avoid division by zero
            return 0.0
            
        slope = numerator / denominator
        angle = math.atan(slope) * 180.0 / math.pi
        
        # Normalize to -45 to 45 degrees
        if angle > 45:
            angle -= 90
        elif angle < -45:
            angle += 90
            
        return angle

def replace_images_in_markdown(md: str, images: dict[str, str]) -> str:
    """
    Replace image placeholders in markdown with base64-encoded images.
    Uses regex-based matching to handle variations in image IDs and formats.

    Args:
        md: Markdown text containing image placeholders
        images: Dictionary mapping image IDs to base64 strings

    Returns:
        Markdown text with images replaced by base64 data
    """
    # Process each image ID in the dictionary
    for img_id, base64_str in images.items():
        # Extract the base ID without extension for more flexible matching
        base_id = img_id.split('.')[0]
        
        # Match markdown image pattern where URL contains the base ID
        # Using a single regex with groups to capture the full pattern
        pattern = re.compile(rf'!\[([^\]]*)\]\(([^\)]*{base_id}[^\)]*)\)')
        
        # Process all matches
        matches = list(pattern.finditer(md))
        for match in reversed(matches):  # Process in reverse to avoid offset issues
            # Replace the entire match with a properly formatted base64 image
            md = md[:match.start()] + f"![{img_id}](data:image/jpeg;base64,{base64_str})" + md[match.end():]
    
    return md

def get_combined_markdown(ocr_response) -> str:
    """
    Combine OCR text and images into a single markdown document.
    
    Args:
        ocr_response: OCR response object from Mistral AI
        
    Returns:
        Combined markdown string with embedded images
    """
    markdowns = []
    
    # Process each page of the OCR response
    for page in ocr_response.pages:
        # Extract image data if available
        image_data = {}
        if hasattr(page, "images"):
            for img in page.images:
                if hasattr(img, "id") and hasattr(img, "image_base64"):
                    image_data[img.id] = img.image_base64
        
        # Replace image placeholders with base64 data
        page_markdown = page.markdown if hasattr(page, "markdown") else ""
        processed_markdown = replace_images_in_markdown(page_markdown, image_data)
        markdowns.append(processed_markdown)
    
    # Join all pages' markdown with double newlines
    return "\n\n".join(markdowns)

def encode_image_for_api(image_path: Union[str, Path]) -> str:
    """
    Encode an image as base64 data URL for API submission.
    
    Args:
        image_path: Path to the image file
        
    Returns:
        Base64 data URL for the image
    """
    # Convert to Path object if string
    image_file = Path(image_path) if isinstance(image_path, str) else image_path
    
    # Verify image exists
    if not image_file.is_file():
        raise FileNotFoundError(f"Image file not found: {image_file}")
    
    # Determine mime type based on file extension
    mime_type = 'image/jpeg'  # Default mime type
    suffix = image_file.suffix.lower()
    if suffix == '.png':
        mime_type = 'image/png'
    elif suffix == '.gif':
        mime_type = 'image/gif'
    elif suffix in ['.jpg', '.jpeg']:
        mime_type = 'image/jpeg'
    elif suffix == '.pdf':
        mime_type = 'application/pdf'
    
    # Encode image as base64
    encoded = base64.b64encode(image_file.read_bytes()).decode()
    return f"data:{mime_type};base64,{encoded}"

def encode_bytes_for_api(file_bytes: bytes, mime_type: str) -> str:
    """
    Encode binary data as base64 data URL for API submission.
    
    Args:
        file_bytes: Binary file data
        mime_type: MIME type of the file (e.g., 'image/jpeg', 'application/pdf')
        
    Returns:
        Base64 data URL for the data
    """
    # Encode data as base64
    encoded = base64.b64encode(file_bytes).decode()
    return f"data:{mime_type};base64,{encoded}"

def calculate_image_entropy(pil_img: Image.Image) -> float:
    """
    Calculate the entropy of a PIL image.
    Entropy is a measure of randomness; low entropy indicates a blank or simple image,
    high entropy indicates more complex content (e.g., text or detailed images).
    
    Args:
        pil_img: PIL Image object
    
    Returns:
        float: Entropy value
    """
    # Convert to grayscale for entropy calculation
    gray_img = pil_img.convert("L")
    arr = np.array(gray_img)
    # Compute histogram
    hist, _ = np.histogram(arr, bins=256, range=(0, 255), density=True)
    # Remove zero entries to avoid log(0)
    hist = hist[hist > 0]
    # Calculate entropy
    entropy = -np.sum(hist * np.log2(hist))
    return float(entropy)

def estimate_text_density(image_np):
    """
    Estimate text density patterns in an image.
    Returns metrics on text distribution and special cases.
    
    Args:
        image_np: Numpy array of the image
        
    Returns:
        dict: Text density metrics
    """
    # Convert to grayscale
    if len(image_np.shape) > 2 and image_np.shape[2] == 3:
        gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
    else:
        gray = image_np
    
    # Binarize image
    _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
    
    # Analyze vertical text density profile (important for headers/footers)
    height, width = gray.shape
    vertical_profile = np.sum(binary, axis=1) / width
    
    # Analyze horizontal text density profile
    horizontal_profile = np.sum(binary, axis=0) / height
    
    # Calculate statistics
    v_mean = np.mean(vertical_profile)
    v_std = np.std(vertical_profile)
    v_max = np.max(vertical_profile)
    
    # Detect uppercase text regions (common in headers of Baldwin document)
    # Uppercase text tends to have more consistent height and uniform vertical density
    section_height = height // 10  # Divide into 10 vertical sections
    uppercase_sections = 0
    
    for i in range(0, height, section_height):
        section = binary[i:min(i+section_height, height), :]
        section_profile = np.sum(section, axis=1) / width
        
        # Uppercase characteristics: high density with low variation
        if np.mean(section_profile) > v_mean * 1.5 and np.std(section_profile) < v_std * 0.7:
            uppercase_sections += 1
    
    # Determine overall pattern
    if v_std / v_mean > 0.8:
        pattern = 'varied'  # High variance indicates sections with different text densities
    else:
        pattern = 'uniform'  # Low variance indicates uniform text distribution
    
    return {
        'mean_density': float(v_mean),
        'density_variation': float(v_std),
        'pattern': pattern,
        'uppercase_sections': uppercase_sections,
        'max_density': float(v_max)
    }

def serialize_ocr_object(obj):
    """
    Serialize OCR response objects to JSON serializable format.
    Handles OCRImageObject specifically to prevent serialization errors.
    
    Args:
        obj: The object to serialize
        
    Returns:
        JSON serializable representation of the object
    """
    # Fast path: Handle primitive types directly
    if obj is None or isinstance(obj, (str, int, float, bool)):
        return obj
        
    # Handle collections
    if isinstance(obj, list):
        return [serialize_ocr_object(item) for item in obj]
    elif isinstance(obj, dict):
        return {k: serialize_ocr_object(v) for k, v in obj.items()}
    elif isinstance(obj, OCRImageObject):
        # Special handling for OCRImageObject
        return {
            'id': obj.id if hasattr(obj, 'id') else None,
            'image_base64': obj.image_base64 if hasattr(obj, 'image_base64') else None
        }
    elif hasattr(obj, '__dict__'):
        # For objects with __dict__ attribute
        return {k: serialize_ocr_object(v) for k, v in obj.__dict__.items() 
                if not k.startswith('_')}  # Skip private attributes
    else:
        # Try to convert to string as last resort
        try:
            return str(obj)
        except:
            return None

# Clean OCR result with focus on Mistral compatibility
def clean_ocr_result(result, use_segmentation=False, vision_enabled=True, preprocessing_options=None):
    """
    Clean text content in OCR results, preserving original structure from Mistral API.
    Only removes markdown/HTML conflicts without duplicating content across fields.
    
    Args:
        result: OCR result object or dictionary
        use_segmentation: Whether image segmentation was used
        vision_enabled: Whether vision model was used
        preprocessing_options: Dictionary of preprocessing options
        
    Returns:
        Cleaned result object
    """
    if not result:
        return result

    # Import text utilities for cleaning
    try:
        from utils.text_utils import clean_raw_text
        text_cleaner_available = True
    except ImportError:
        text_cleaner_available = False
        
    def clean_text(text):
        """Clean text content, removing markdown image references and base64 data"""
        if not text or not isinstance(text, str):
            return ""
            
        if text_cleaner_available:
            text = clean_raw_text(text)
        else:
            # Remove image references like ![image](data:image/...)
            text = re.sub(r'!\[.*?\]\(data:image/[^)]+\)', '', text)
            
            # Remove basic markdown image references like ![alt](img-1.jpg)
            text = re.sub(r'!\[[^\]]*\]\([^)]+\)', '', text)
            
            # Remove base64 encoded image data
            text = re.sub(r'data:image/[^;]+;base64,[a-zA-Z0-9+/=]+', '', text)
            
            # Clean up any JSON-like image object references
            text = re.sub(r'{"image(_data)?":("[^"]*"|null|true|false|\{[^}]*\}|\[[^\]]*\])}', '', text)
            
            # Clean up excessive whitespace and line breaks created by removals
            text = re.sub(r'\n{3,}', '\n\n', text)
            text = re.sub(r'\s{3,}', ' ', text)
            
        return text.strip()
    
    # Process dictionary
    if isinstance(result, dict):
        # For PDF documents, preserve original structure from Mistral API
        is_pdf = result.get('file_type', '') == 'pdf' or (
            result.get('file_name', '').lower().endswith('.pdf')
        )
        
        # Ensure ocr_contents exists
        if 'ocr_contents' not in result:
            result['ocr_contents'] = {}
        
        # Clean raw_text if it exists but don't duplicate it
        if 'raw_text' in result:
            result['raw_text'] = clean_text(result['raw_text'])
            
        # Handle ocr_contents fields - clean them but don't duplicate
        if 'ocr_contents' in result:
            for key, value in list(result['ocr_contents'].items()):
                # Skip binary fields and image data
                if key in ['image_base64', 'images', 'binary_data'] and value:
                    continue
                    
                # Clean string values to remove markdown/HTML conflicts
                if isinstance(value, str):
                    result['ocr_contents'][key] = clean_text(value)
        
        # Handle segmentation data
        if use_segmentation and preprocessing_options and 'segmentation_data' in preprocessing_options:
            # Store segmentation metadata
            result['segmentation_applied'] = True
            
            # Extract combined text if available
            if 'combined_text' in preprocessing_options['segmentation_data']:
                segmentation_text = clean_text(preprocessing_options['segmentation_data']['combined_text'])
                # Add as dedicated field
                result['ocr_contents']['segmentation_text'] = segmentation_text
                
                # IMPORTANT: For documents with overlapping regions like baldwin-15th-north,
                # the intelligently merged segmentation text is more accurate than the raw OCR 
                # Always use segmentation text as the primary source when available
                # This ensures clean, non-duplicated content from overlapping regions
                result['ocr_contents']['raw_text'] = segmentation_text
                
                # Also update the 'text' field which is used in some contexts
                if 'text' in result['ocr_contents']:
                    result['ocr_contents']['text'] = segmentation_text
        
        # Clean pages_data if available (Mistral OCR format)
        if 'pages_data' in result:
            for page in result['pages_data']:
                if isinstance(page, dict):
                    # Clean text field
                    if 'text' in page:
                        page['text'] = clean_text(page['text'])
                    
                    # Clean markdown field
                    if 'markdown' in page:
                        page['markdown'] = clean_text(page['markdown'])
    
    # Handle list content recursively
    elif isinstance(result, list):
        return [clean_ocr_result(item, use_segmentation, vision_enabled, preprocessing_options) 
                for item in result]
    
    return result

def create_results_zip(results, output_dir=None, zip_name=None):
    """
    Create a zip file containing OCR results.
    
    Args:
        results: Dictionary or list of OCR results
        output_dir: Optional output directory
        zip_name: Optional zip file name
        
    Returns:
        Path to the created zip file
    """
    # Create temporary output directory if not provided
    if output_dir is None:
        output_dir = Path.cwd() / "output"
        output_dir.mkdir(exist_ok=True)
    else:
        output_dir = Path(output_dir)
        output_dir.mkdir(exist_ok=True)
    
    # Generate zip name if not provided
    if zip_name is None:
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        
        if isinstance(results, list):
            # For a list of results, create a descriptive name
            file_count = len(results)
            zip_name = f"ocr_results_{file_count}_{timestamp}.zip"
        else:
            # For single result, create descriptive filename
            base_name = results.get('file_name', 'document').split('.')[0]
            zip_name = f"{base_name}_{timestamp}.zip"
    
    try:
        # Get zip data in memory first
        zip_data = create_results_zip_in_memory(results)
        
        # Save to file
        zip_path = output_dir / zip_name
        with open(zip_path, 'wb') as f:
            f.write(zip_data)
        
        return zip_path
    except Exception as e:
        # Create an empty zip file as fallback
        logger.error(f"Error creating zip file: {str(e)}")
        zip_path = output_dir / zip_name
        with zipfile.ZipFile(zip_path, 'w') as zipf:
            zipf.writestr("info.txt", "Could not create complete archive")
        
        return zip_path

def create_results_zip_in_memory(results):
    """
    Create a zip file containing OCR results in memory.
    Packages markdown with embedded image tags, raw text, and JSON file
    in a contextually relevant structure.
    
    Args:
        results: Dictionary or list of OCR results
        
    Returns:
        Binary zip file data
    """
    # Create a BytesIO object
    zip_buffer = io.BytesIO()
    
    # Create a ZipFile instance
    with zipfile.ZipFile(zip_buffer, 'w', compression=zipfile.ZIP_DEFLATED) as zipf:
        # Check if results is a list or a dictionary
        is_list = isinstance(results, list)
        
        if is_list:
            # Handle multiple results by creating subdirectories
            for idx, result in enumerate(results):
                if result and isinstance(result, dict):
                    # Create a folder name based on the file name or index
                    folder_name = result.get('file_name', f'document_{idx+1}')
                    folder_name = Path(folder_name).stem  # Remove file extension
                    
                    # Add files to this folder
                    add_result_files_to_zip(zipf, result, f"{folder_name}/")
        else:
            # Single result - add files directly to root of zip
            add_result_files_to_zip(zipf, results)
    
    # Seek to the beginning of the BytesIO object
    zip_buffer.seek(0)
    
    # Return the zip file bytes
    return zip_buffer.getvalue()

def truncate_base64_in_result(result, prefix_length=32, suffix_length=32):
    """
    Create a copy of the result dictionary with base64 image data truncated.
    This keeps the structure intact while making the JSON more readable.
    
    Args:
        result: OCR result dictionary
        prefix_length: Number of characters to keep at the beginning
        suffix_length: Number of characters to keep at the end
        
    Returns:
        Dictionary with truncated base64 data
    """
    if not result or not isinstance(result, dict):
        return {}
        
    # Create a deep copy to avoid modifying the original
    import copy
    truncated_result = copy.deepcopy(result)
    
    # Helper function to truncate base64 strings
    def truncate_base64(data):
        if not isinstance(data, str) or len(data) <= prefix_length + suffix_length + 10:
            return data
            
        # Extract prefix and suffix based on whether this is a data URI or raw base64
        if data.startswith('data:'):
            # Handle data URIs like '...'
            parts = data.split(',', 1)
            if len(parts) != 2:
                return data  # Unexpected format, return as is
                
            header = parts[0] + ','
            base64_content = parts[1]
            
            if len(base64_content) <= prefix_length + suffix_length + 10:
                return data  # Not long enough to truncate
                
            truncated = (f"{header}{base64_content[:prefix_length]}..."
                         f"[truncated {len(base64_content) - prefix_length - suffix_length} chars]..."
                         f"{base64_content[-suffix_length:]}")
        else:
            # Handle raw base64 strings
            truncated = (f"{data[:prefix_length]}..."
                         f"[truncated {len(data) - prefix_length - suffix_length} chars]..."
                         f"{data[-suffix_length:]}")
        
        return truncated
    
    # Helper function to recursively truncate base64 in nested structures
    def truncate_base64_recursive(obj):
        if isinstance(obj, dict):
            # Check for keys that typically contain base64 data
            for key in list(obj.keys()):
                if key in ['image_base64', 'base64'] and isinstance(obj[key], str):
                    obj[key] = truncate_base64(obj[key])
                elif isinstance(obj[key], (dict, list)):
                    truncate_base64_recursive(obj[key])
        elif isinstance(obj, list):
            for item in obj:
                if isinstance(item, (dict, list)):
                    truncate_base64_recursive(item)
    
    # Truncate base64 data throughout the result
    truncate_base64_recursive(truncated_result)
    
    # Specifically handle the pages_data structure
    if 'pages_data' in truncated_result:
        for page in truncated_result['pages_data']:
            if isinstance(page, dict) and 'images' in page:
                for img in page['images']:
                    if isinstance(img, dict) and 'image_base64' in img and isinstance(img['image_base64'], str):
                        img['image_base64'] = truncate_base64(img['image_base64'])
    
    # Handle raw_response_data if present
    if 'raw_response_data' in truncated_result and isinstance(truncated_result['raw_response_data'], dict):
        if 'pages' in truncated_result['raw_response_data']:
            for page in truncated_result['raw_response_data']['pages']:
                if isinstance(page, dict) and 'images' in page:
                    for img in page['images']:
                        if isinstance(img, dict) and 'base64' in img and isinstance(img['base64'], str):
                            img['base64'] = truncate_base64(img['base64'])
    
    return truncated_result

def clean_base64_from_result(result):
    """
    Create a clean copy of the result dictionary with base64 image data removed.
    This ensures JSON files don't contain large base64 strings.
    
    Args:
        result: OCR result dictionary
        
    Returns:
        Cleaned dictionary without base64 data
    """
    if not result or not isinstance(result, dict):
        return {}
        
    # Create a deep copy to avoid modifying the original
    import copy
    clean_result = copy.deepcopy(result)
    
    # Helper function to recursively clean base64 from nested structures
    def clean_base64_recursive(obj):
        if isinstance(obj, dict):
            # Check for keys that typically contain base64 data
            for key in list(obj.keys()):
                if key in ['image_base64', 'base64']:
                    obj[key] = "[BASE64_DATA_REMOVED]"
                elif isinstance(obj[key], (dict, list)):
                    clean_base64_recursive(obj[key])
        elif isinstance(obj, list):
            for item in obj:
                if isinstance(item, (dict, list)):
                    clean_base64_recursive(item)
    
    # Clean the entire result
    clean_base64_recursive(clean_result)
    
    # Specifically handle the pages_data structure
    if 'pages_data' in clean_result:
        for page in clean_result['pages_data']:
            if isinstance(page, dict) and 'images' in page:
                for img in page['images']:
                    if isinstance(img, dict) and 'image_base64' in img:
                        img['image_base64'] = "[BASE64_DATA_REMOVED]"
    
    # Handle raw_response_data if present
    if 'raw_response_data' in clean_result and isinstance(clean_result['raw_response_data'], dict):
        if 'pages' in clean_result['raw_response_data']:
            for page in clean_result['raw_response_data']['pages']:
                if isinstance(page, dict) and 'images' in page:
                    for img in page['images']:
                        if isinstance(img, dict) and 'base64' in img:
                            img['base64'] = "[BASE64_DATA_REMOVED]"
    
    return clean_result

def create_markdown_with_file_references(result, image_path_prefix="images/"):
    """
    Create a markdown document with file references to images instead of base64 embedding.
    Ideal for use in zip archives where images are stored as separate files.
    
    Args:
        result: OCR result dictionary
        image_path_prefix: Path prefix for image references (e.g., "images/")
        
    Returns:
        Markdown content as string with file references
    """
    # Similar to create_markdown_with_images but uses file references
    # Import content utils to use classification functions
    try:
        from utils.content_utils import classify_document_content, extract_document_text, extract_image_description
        content_utils_available = True
    except ImportError:
        content_utils_available = False
    
    # Get content classification
    has_text = True
    has_images = False
    
    if content_utils_available:
        classification = classify_document_content(result)
        has_text = classification['has_content']
        has_images = result.get('has_images', False)
    else:
        # Minimal fallback detection
        if 'has_images' in result:
            has_images = result['has_images']
        
        # Check for image data more thoroughly
        if 'pages_data' in result and isinstance(result['pages_data'], list):
            for page in result['pages_data']:
                if isinstance(page, dict) and 'images' in page and page['images']:
                    has_images = True
                    break
    
    # Start building the markdown document
    md = []
    
    # Add document title/header
    md.append(f"# {result.get('file_name', 'Document')}\n")
    
    # Add metadata section
    md.append("## Document Metadata\n")
    
    # Add timestamp
    if 'timestamp' in result:
        md.append(f"**Processed:** {result['timestamp']}\n")
    
    # Add languages if available
    if 'languages' in result and result['languages']:
        languages = [lang for lang in result['languages'] if lang]
        if languages:
            md.append(f"**Languages:** {', '.join(languages)}\n")
    
    # Add document type and topics
    if 'detected_document_type' in result:
        md.append(f"**Document Type:** {result['detected_document_type']}\n")
    
    if 'topics' in result and result['topics']:
        md.append(f"**Topics:** {', '.join(result['topics'])}\n")
    
    md.append("\n---\n")
    
    # Document title - extract from result if available
    if 'ocr_contents' in result and 'title' in result['ocr_contents'] and result['ocr_contents']['title']:
        title_content = result['ocr_contents']['title']
        md.append(f"## {title_content}\n")
    
    # Add images if present
    if has_images and 'pages_data' in result:
        md.append("## Images\n")
        
        # Extract and display all images with file references
        for page_idx, page in enumerate(result['pages_data']):
            if 'images' in page and isinstance(page['images'], list):
                for img_idx, img in enumerate(page['images']):
                    if 'image_base64' in img:
                        # Create image reference to file in the zip
                        image_filename = f"image_{page_idx+1}_{img_idx+1}.jpg"
                        image_path = f"{image_path_prefix}{image_filename}"
                        image_caption = f"Image {page_idx+1}-{img_idx+1}"
                        md.append(f"![{image_caption}]({image_path})\n")
                        
                        # Add image description if available through utils
                        if content_utils_available:
                            description = extract_image_description(result)
                            if description:
                                md.append(f"*{description}*\n")
        
        md.append("\n---\n")
    
    # Add document text section
    md.append("## Text Content\n")
    
    # Extract text content systematically
    text_content = ""
    structured_sections = {}
    
    # Helper function to extract clean text from dictionary objects
    def extract_clean_text(content):
        if isinstance(content, str):
            # Check if content is a stringified JSON
            if content.strip().startswith("{") and content.strip().endswith("}"):
                try:
                    # Try to parse as JSON
                    content_dict = json.loads(content.replace("'", '"'))
                    if 'text' in content_dict:
                        return content_dict['text']
                    return content
                except:
                    return content
            return content
        elif isinstance(content, dict):
            # If it's a dictionary with a 'text' key, return just that value
            if 'text' in content and isinstance(content['text'], str):
                return content['text']
            return content
        return content
    
    if content_utils_available:
        # Use the systematic utility function for main text
        text_content = extract_document_text(result)
        text_content = extract_clean_text(text_content)
        
        # Collect all available structured sections
        if 'ocr_contents' in result:
            for field, content in result['ocr_contents'].items():
                # Skip certain fields that are handled separately
                if field in ["raw_text", "error", "partial_text", "main_text"]:
                    continue
                    
                if content:
                    # Extract clean text from content if possible
                    clean_content = extract_clean_text(content)
                    # Add this as a structured section
                    structured_sections[field] = clean_content
    else:
        # Fallback extraction logic
        if 'ocr_contents' in result:
            # First find main text
            for field in ["main_text", "content", "text", "transcript", "raw_text"]:
                if field in result['ocr_contents'] and result['ocr_contents'][field]:
                    content = result['ocr_contents'][field]
                    if isinstance(content, str) and content.strip():
                        text_content = content
                        break
                    elif isinstance(content, dict):
                        # Try to convert complex objects to string
                        try:
                            text_content = json.dumps(content, indent=2)
                            break
                        except:
                            pass
            
            # Then collect all structured sections
            for field, content in result['ocr_contents'].items():
                # Skip certain fields that are handled separately
                if field in ["raw_text", "error", "partial_text", "main_text", "content", "text", "transcript"]:
                    continue
                    
                if content:
                    # Add this as a structured section
                    structured_sections[field] = content
    
    # Add the main text content - display raw text without a field label
    if text_content:
        # Check if this is from raw_text (based on content match)
        is_raw_text = False
        if 'ocr_contents' in result and 'raw_text' in result['ocr_contents']:
            if result['ocr_contents']['raw_text'] == text_content:
                is_raw_text = True
                
        # Display content without adding a "raw_text:" label
        md.append(text_content + "\n\n")
    
    # Add structured sections if available
    if structured_sections:
        for section_name, section_content in structured_sections.items():
            # Use proper markdown header for sections - consistently capitalize all section names
            display_name = section_name.replace("_", " ").capitalize()
            # Handle different content types
            if isinstance(section_content, str):
                md.append(section_content + "\n\n")
            elif isinstance(section_content, dict):
                # Dictionary content - format as key-value pairs
                for key, value in section_content.items():
                    # Treat all values as plain text to maintain content purity
                    # This prevents JSON-like structures from being formatted as code blocks
                    md.append(f"**{key}:** {value}\n\n")
            elif isinstance(section_content, list):
                # List content - create a markdown list
                for item in section_content:
                    # Treat all items as plain text
                    md.append(f"- {item}\n")
                md.append("\n")
    
    # Join all markdown parts into a single string
    return "\n".join(md)

def add_result_files_to_zip(zipf, result, prefix=""):
    """
    Add files for a single result to a zip file.
    
    Args:
        zipf: ZipFile instance to add files to
        result: OCR result dictionary
        prefix: Optional prefix for file paths in the zip
    """
    if not result or not isinstance(result, dict):
        return
    
    # Create a timestamp for filename if not in result
    timestamp = result.get('timestamp', datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
    
    # Get base name for files
    file_name = result.get('file_name', 'document')
    base_name = Path(file_name).stem
    
    try:
        # 1. Add JSON file - with base64 data cleaned out
        clean_result = clean_base64_from_result(result)
        json_str = json.dumps(clean_result, indent=2)
        zipf.writestr(f"{prefix}{base_name}.json", json_str)
        
        # 2. Add markdown file that exactly matches Tab 1 display
        # Use the create_markdown_with_images function to ensure it matches the UI exactly
        try:
            markdown_content = create_markdown_with_images(result)
            zipf.writestr(f"{prefix}{base_name}.md", markdown_content)
        except Exception as e:
            logger.error(f"Error creating markdown: {str(e)}")
            # Fallback to simpler markdown if error occurs
            zipf.writestr(f"{prefix}{base_name}.md", f"# {file_name}\n\nError generating complete markdown output.")
        
        # Extract and save images first to ensure they exist before creating markdown
        img_paths = {}
        has_images = result.get('has_images', False)
        
        # 3. Add individual images if available
        if has_images and 'pages_data' in result:
            img_folder = f"{prefix}images/"
            for page_idx, page in enumerate(result['pages_data']):
                if 'images' in page and isinstance(page['images'], list):
                    for img_idx, img in enumerate(page['images']):
                        if 'image_base64' in img and img['image_base64']:
                            # Extract the base64 data
                            try:
                                # Get the base64 data
                                img_data = img['image_base64']
                                
                                # Handle the base64 data carefully
                                if isinstance(img_data, str):
                                    # If it has a data URI prefix, remove it
                                    if ',' in img_data and ';base64,' in img_data:
                                        # Keep the complete data after the comma
                                        img_data = img_data.split(',', 1)[1]
                                    
                                    # Make sure we have the complete data (not truncated)
                                    try:
                                        # Decode the base64 data with padding correction
                                        # Add padding if needed to prevent truncation errors
                                        missing_padding = len(img_data) % 4
                                        if missing_padding:
                                            img_data += '=' * (4 - missing_padding)
                                        img_bytes = base64.b64decode(img_data)
                                    except Exception as e:
                                        logger.error(f"Base64 decoding error: {str(e)} for image {page_idx}-{img_idx}")
                                        # Skip this image if we can't decode it
                                        continue
                                else:
                                    # If it's not a string (e.g., already bytes), use it directly
                                    img_bytes = img_data
                                
                                # Create image filename
                                image_filename = f"image_{page_idx+1}_{img_idx+1}.jpg"
                                img_paths[(page_idx, img_idx)] = image_filename
                                
                                # Write the image to the zip file
                                zipf.writestr(f"{img_folder}{image_filename}", img_bytes)
                            except Exception as e:
                                logger.warning(f"Could not add image to zip: {str(e)}")
        
        # 4. Add markdown with file references to images for offline viewing
        try:
            if has_images:
                # Create markdown with file references
                file_ref_markdown = create_markdown_with_file_references(result, "images/")
                zipf.writestr(f"{prefix}{base_name}_with_files.md", file_ref_markdown)
        except Exception as e:
            logger.warning(f"Error creating markdown with file references: {str(e)}")
            
        # 5. Add README.txt with explanation of file contents
        readme_content = f"""
OCR RESULTS FOR: {file_name}
Processed: {timestamp}

This archive contains the following files:

- {base_name}.json: Complete JSON data with all extracted information
- {base_name}.md: Markdown document with embedded base64 images (exactly as shown in the app)
- {base_name}_with_files.md: Alternative markdown with file references instead of base64 (for offline viewing)
- images/ folder: Contains extracted images from the document (if present)

Generated by Historical OCR using Mistral AI
        """
        zipf.writestr(f"{prefix}README.txt", readme_content.strip())
        
    except Exception as e:
        logger.error(f"Error adding files to zip: {str(e)}")

def create_markdown_with_images(result):
    """
    Create a clean Markdown document from OCR results that properly preserves 
    image references and text structure, following the principle of content purity.
    
    Args:
        result: OCR result dictionary
        
    Returns:
        Markdown content as string
    """
    # Similar to create_markdown_with_file_references but embeds base64 images
    # Import content utils to use classification functions
    try:
        from utils.content_utils import classify_document_content, extract_document_text, extract_image_description
        content_utils_available = True
    except ImportError:
        content_utils_available = False
    
    # Get content classification
    has_text = True
    has_images = False
    
    if content_utils_available:
        classification = classify_document_content(result)
        has_text = classification['has_content']
        has_images = result.get('has_images', False)
    else:
        # Minimal fallback detection
        if 'has_images' in result:
            has_images = result['has_images']
        
        # Check for image data more thoroughly
        if 'pages_data' in result and isinstance(result['pages_data'], list):
            for page in result['pages_data']:
                if isinstance(page, dict) and 'images' in page and page['images']:
                    has_images = True
                    break
    
    # Start building the markdown document
    md = []
    
    # Add document title/header
    md.append(f"# {result.get('file_name', 'Document')}\n")
    
    # Add metadata section
    md.append("## Document Metadata\n")
    
    # Add timestamp
    if 'timestamp' in result:
        md.append(f"**Processed:** {result['timestamp']}\n")
    
    # Add languages if available
    if 'languages' in result and result['languages']:
        languages = [lang for lang in result['languages'] if lang]
        if languages:
            md.append(f"**Languages:** {', '.join(languages)}\n")
    
    # Add document type and topics
    if 'detected_document_type' in result:
        md.append(f"**Document Type:** {result['detected_document_type']}\n")
    
    if 'topics' in result and result['topics']:
        md.append(f"**Topics:** {', '.join(result['topics'])}\n")
    
    md.append("\n---\n")
    
    # Document title - extract from result if available
    if 'ocr_contents' in result and 'title' in result['ocr_contents'] and result['ocr_contents']['title']:
        title_content = result['ocr_contents']['title']
        md.append(f"## {title_content}\n")
    
    # Add images if present - with base64 embedding
    if has_images and 'pages_data' in result:
        md.append("## Images\n")
        
        # Extract and display all images with embedded base64
        for page_idx, page in enumerate(result['pages_data']):
            if 'images' in page and isinstance(page['images'], list):
                for img_idx, img in enumerate(page['images']):
                    if 'image_base64' in img:
                        # Use the base64 data directly
                        image_caption = f"Image {page_idx+1}-{img_idx+1}"
                        img_data = img['image_base64']
                        
                        # Make sure it has proper data URI format
                        if isinstance(img_data, str) and not img_data.startswith('data:'):
                            img_data = f"data:image/jpeg;base64,{img_data}"
                            
                        md.append(f"![{image_caption}]({img_data})\n")
                        
                        # Add image description if available through utils
                        if content_utils_available:
                            description = extract_image_description(result)
                            if description:
                                md.append(f"*{description}*\n")
        
        md.append("\n---\n")
    
    # Add document text section
    md.append("## Text Content\n")
    
    # Extract text content systematically
    text_content = ""
    structured_sections = {}
    
    if content_utils_available:
        # Use the systematic utility function for main text
        text_content = extract_document_text(result)
        
        # Collect all available structured sections
        if 'ocr_contents' in result:
            for field, content in result['ocr_contents'].items():
                # Skip certain fields that are handled separately
                if field in ["raw_text", "error", "partial_text", "main_text"]:
                    continue
                    
                if content:
                    # Add this as a structured section
                    structured_sections[field] = content
    else:
        # Fallback extraction logic
        if 'ocr_contents' in result:
            # First find main text
            for field in ["main_text", "content", "text", "transcript", "raw_text"]:
                if field in result['ocr_contents'] and result['ocr_contents'][field]:
                    content = result['ocr_contents'][field]
                    if isinstance(content, str) and content.strip():
                        text_content = content
                        break
                    elif isinstance(content, dict):
                        # Try to convert complex objects to string
                        try:
                            text_content = json.dumps(content, indent=2)
                            break
                        except:
                            pass
            
            # Then collect all structured sections
            for field, content in result['ocr_contents'].items():
                # Skip certain fields that are handled separately
                if field in ["raw_text", "error", "partial_text", "main_text", "content", "text", "transcript"]:
                    continue
                    
                if content:
                    # Add this as a structured section
                    structured_sections[field] = content
    
    # Add the main text content
    if text_content:
        md.append(text_content + "\n\n")
    
    # Add structured sections if available
    if structured_sections:
        for section_name, section_content in structured_sections.items():
            # Use proper markdown header for sections - consistently capitalize all section names
            display_name = section_name.replace("_", " ").capitalize()
            md.append(f"### {display_name}\n")
            # Add a separator for clarity
            md.append("\n---\n\n")
            
            # Handle different content types
            if isinstance(section_content, str):
                md.append(section_content + "\n\n")
            elif isinstance(section_content, dict):
                # Dictionary content - format as key-value pairs
                for key, value in section_content.items():
                    # Treat all values as plain text to maintain content purity
                    md.append(f"**{key}:** {value}\n\n")
            elif isinstance(section_content, list):
                # List content - create a markdown list
                for item in section_content:
                    # Keep list items as plain text
                    md.append(f"- {item}\n")
                md.append("\n")
    
    # Join all markdown parts into a single string
    return "\n".join(md)