historical-ocr / image_segmentation.py
milwright's picture
Consolidate segmentation improvements and code cleanup
42dc069
raw
history blame
20.7 kB
"""
Image segmentation utility for OCR preprocessing.
Separates text regions from image regions to improve OCR accuracy on mixed-content documents.
Based on Mistral AI cookbook examples.
"""
import cv2
import numpy as np
from PIL import Image
import io
import base64
import logging
from pathlib import Path
from typing import Tuple, List, Dict, Union, Optional
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def segment_image_for_ocr(image_path: Union[str, Path], vision_enabled: bool = True, preserve_content: bool = True) -> Dict[str, Union[Image.Image, str]]:
"""
Segment an image into text and image regions for improved OCR processing.
Args:
image_path: Path to the image file
vision_enabled: Whether the vision model is enabled
Returns:
Dict containing:
- 'text_regions': PIL Image with highlighted text regions
- 'image_regions': PIL Image with highlighted image regions
- 'text_mask_base64': Base64 string of text mask for visualization
- 'combined_result': PIL Image with combined processing approach
"""
# Convert to Path object if string
image_file = Path(image_path) if isinstance(image_path, str) else image_path
# Log start of processing
logger.info(f"Segmenting image for OCR: {image_file.name}")
try:
# Open original image with PIL for compatibility
with Image.open(image_file) as pil_img:
# --- 2 · Stop "text page detected as image" when vision model is off ---
if not vision_enabled:
# Import the entropy calculator from utils.image_utils
from utils.image_utils import calculate_image_entropy
# Calculate entropy to determine if this is line art or blank
ent = calculate_image_entropy(pil_img)
if ent < 3.5: # Heuristically low → line-art or blank page
logger.info(f"Low entropy image detected ({ent:.2f}), classifying as illustration")
# Return minimal result for illustration
return {
'text_regions': None,
'image_regions': pil_img,
'text_mask_base64': None,
'combined_result': None,
'text_regions_coordinates': []
}
# Convert to RGB if not already
if pil_img.mode != 'RGB':
pil_img = pil_img.convert('RGB')
# Convert PIL image to OpenCV format
img = np.array(pil_img)
img_rgb = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# Create grayscale version for text detection
gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
# Step 1: Apply adaptive thresholding to identify potential text areas
# This works well for printed text against contrasting backgrounds
binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 11, 2)
# Step 2: Perform morphological operations to connect text components
# Use a combination of horizontal and vertical kernels for better text detection
# in historical documents with mixed content
horiz_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 1))
vert_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 3))
# Apply horizontal dilation to connect characters in a line
horiz_dilation = cv2.dilate(binary, horiz_kernel, iterations=1)
# Apply vertical dilation to connect lines in a paragraph
vert_dilation = cv2.dilate(binary, vert_kernel, iterations=1)
# Combine both dilations for better region detection
dilation = cv2.bitwise_or(horiz_dilation, vert_dilation)
# Step 3: Find contours which will correspond to text blocks
contours, _ = cv2.findContours(dilation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Prepare masks to separate text and image regions
text_mask = np.zeros_like(gray)
# Step 4: Filter contours based on size to identify text regions
min_area = 50 # Lower minimum area to catch smaller text blocks in historical documents
max_area = img.shape[0] * img.shape[1] * 0.4 # Reduced max to avoid capturing too much
text_regions = []
for contour in contours:
area = cv2.contourArea(contour)
# Filter by area to avoid noise
if min_area < area < max_area:
# Get the bounding rectangle
x, y, w, h = cv2.boundingRect(contour)
# Calculate aspect ratio - text regions typically have wider aspect ratio
aspect_ratio = w / h
# Calculate density of dark pixels in the region (text is typically dense)
roi = binary[y:y+h, x:x+w]
dark_pixel_density = np.sum(roi > 0) / (w * h)
# Special handling for historical documents
# Check for position - text is often at the bottom in historical prints
y_position_ratio = y / img.shape[0] # Normalized y position (0 at top, 1 at bottom)
# Bottom regions get preferential treatment as text
is_bottom_region = y_position_ratio > 0.7
# Check if part of a text block cluster (horizontal proximity)
is_text_cluster = False
# Check already identified text regions for proximity
for tx, ty, tw, th in text_regions:
# Check if horizontally aligned and close
if abs((ty + th/2) - (y + h/2)) < max(th, h) and \
abs((tx + tw) - x) < 20: # Near each other horizontally
is_text_cluster = True
break
# More inclusive classification for historical documents
# 1. Typical text characteristics OR
# 2. Bottom position (likely text in historical prints) OR
# 3. Part of a text cluster OR
# 4. Surrounded by other text
is_text_region = ((aspect_ratio > 1.05 or aspect_ratio < 0.9) and dark_pixel_density > 0.1) or \
(is_bottom_region and dark_pixel_density > 0.08) or \
is_text_cluster
if is_text_region:
# Add to text regions list
text_regions.append((x, y, w, h))
# Add to text mask
cv2.rectangle(text_mask, (x, y), (x+w, y+h), 255, -1)
# Step 5: Create visualization for debugging
text_regions_vis = img_rgb.copy()
for x, y, w, h in text_regions:
cv2.rectangle(text_regions_vis, (x, y), (x+w, y+h), (0, 255, 0), 2)
# ENHANCED APPROACH FOR HISTORICAL DOCUMENTS:
# We'll identify different regions including titles at the top of the document
# First, look for potential title text at the top of the document
image_height = img.shape[0]
image_width = img.shape[1]
# Examine the top 20% of the image for potential title text
title_section_height = int(image_height * 0.2)
title_mask = np.zeros_like(gray)
title_mask[:title_section_height, :] = 255
# Find potential title blocks in the top section
title_contours, _ = cv2.findContours(
cv2.bitwise_and(dilation, title_mask),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE
)
# Extract title regions with more permissive criteria
title_regions = []
for contour in title_contours:
area = cv2.contourArea(contour)
# Use more permissive criteria for title regions
if area > min_area * 0.8: # Smaller minimum area for titles
x, y, w, h = cv2.boundingRect(contour)
# Title regions typically have wider aspect ratio
aspect_ratio = w / h
# More permissive density check for titles that might be stylized
roi = binary[y:y+h, x:x+w]
dark_pixel_density = np.sum(roi > 0) / (w * h)
# Check if this might be a title
# Titles tend to be wider, in the center, and at the top
is_wide = aspect_ratio > 2.0
is_centered = abs((x + w/2) - (image_width/2)) < (image_width * 0.3)
is_at_top = y < title_section_height
# If it looks like a title or has good text characteristics
if (is_wide and is_centered and is_at_top) or \
(is_at_top and dark_pixel_density > 0.1):
title_regions.append((x, y, w, h))
# Now handle the main content with our standard approach
# Use fixed regions for the main content - typically below the title
# For primary content, assume most text is in the bottom 70%
text_section_start = int(image_height * 0.7) # Start main text section at 70% down
# Create text mask combining the title regions and main text area
text_mask = np.zeros_like(gray)
text_mask[text_section_start:, :] = 255
# Add title regions to the text mask
for x, y, w, h in title_regions:
# Add some padding around title regions
pad_x = max(5, int(w * 0.05))
pad_y = max(5, int(h * 0.05))
x_start = max(0, x - pad_x)
y_start = max(0, y - pad_y)
x_end = min(image_width, x + w + pad_x)
y_end = min(image_height, y + h + pad_y)
# Add title region to the text mask
text_mask[y_start:y_end, x_start:x_end] = 255
# Image mask is the inverse of text mask - for visualization only
image_mask = np.zeros_like(gray)
image_mask[text_mask == 0] = 255
# For main text regions, find blocks of text in the bottom part
# Create a temporary mask for the main text section
temp_mask = np.zeros_like(gray)
temp_mask[text_section_start:, :] = 255
# Find text regions for visualization purposes
text_regions = []
# Start with any title regions we found
text_regions.extend(title_regions)
# Then find text regions in the main content area
text_region_contours, _ = cv2.findContours(
cv2.bitwise_and(dilation, temp_mask),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE
)
# Add each detected region
for contour in text_region_contours:
x, y, w, h = cv2.boundingRect(contour)
if w > 10 and h > 5: # Minimum size to be considered text
text_regions.append((x, y, w, h))
# Add the entire bottom section as a fallback text region if none detected
if len(text_regions) == 0:
x, y = 0, text_section_start
w, h = img.shape[1], img.shape[0] - text_section_start
text_regions.append((x, y, w, h))
# Create image regions visualization
image_regions_vis = img_rgb.copy()
# Top section is image
cv2.rectangle(image_regions_vis, (0, 0), (img.shape[1], text_section_start), (0, 0, 255), 2)
# Bottom section has text - draw green boxes around detected text regions
text_regions_vis = img_rgb.copy()
for x, y, w, h in text_regions:
cv2.rectangle(text_regions_vis, (x, y), (x+w, y+h), (0, 255, 0), 2)
# For OCR: CRITICAL - Don't modify the image content
# Only create a non-destructive enhanced version
# For text detection visualization:
text_regions_vis = img_rgb.copy()
for x, y, w, h in text_regions:
cv2.rectangle(text_regions_vis, (x, y), (x+w, y+h), (0, 255, 0), 2)
# For image region visualization:
image_regions_vis = img_rgb.copy()
cv2.rectangle(image_regions_vis, (0, 0), (img.shape[1], text_section_start), (0, 0, 255), 2)
# Create a minimally enhanced version of the original image
# that preserves ALL content (both text and image)
combined_result = img_rgb.copy()
# Apply gentle contrast enhancement if requested
if not preserve_content:
# Use a subtle CLAHE enhancement to improve OCR without losing content
lab_img = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab_img)
# Very mild CLAHE settings to preserve text
clahe = cv2.createCLAHE(clipLimit=1.5, tileGridSize=(8, 8))
cl = clahe.apply(l)
# Merge channels back
enhanced_lab = cv2.merge((cl, a, b))
combined_result = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2BGR)
# Extract individual region images for separate OCR processing
region_images = []
if text_regions:
for idx, (x, y, w, h) in enumerate(text_regions):
# Add padding around region (10% of width/height)
pad_x = max(5, int(w * 0.1))
pad_y = max(5, int(h * 0.1))
# Ensure coordinates stay within image bounds
x_start = max(0, x - pad_x)
y_start = max(0, y - pad_y)
x_end = min(img_rgb.shape[1], x + w + pad_x)
y_end = min(img_rgb.shape[0], y + h + pad_y)
# Extract region with padding
region = img_rgb[y_start:y_end, x_start:x_end].copy()
# Store region with its coordinates
region_info = {
'image': region,
'coordinates': (x, y, w, h),
'padded_coordinates': (x_start, y_start, x_end - x_start, y_end - y_start),
'order': idx
}
region_images.append(region_info)
# Convert visualization results back to PIL Images
text_regions_pil = Image.fromarray(cv2.cvtColor(text_regions_vis, cv2.COLOR_BGR2RGB))
image_regions_pil = Image.fromarray(cv2.cvtColor(image_regions_vis, cv2.COLOR_BGR2RGB))
combined_result_pil = Image.fromarray(cv2.cvtColor(combined_result, cv2.COLOR_BGR2RGB))
# Create base64 representation of text mask for visualization
_, buffer = cv2.imencode('.png', text_mask)
text_mask_base64 = base64.b64encode(buffer).decode('utf-8')
# Convert region images to PIL format
region_pil_images = []
for region_info in region_images:
region_pil = Image.fromarray(cv2.cvtColor(region_info['image'], cv2.COLOR_BGR2RGB))
region_info['pil_image'] = region_pil
region_pil_images.append(region_info)
# Return the segmentation results
return {
'text_regions': text_regions_pil,
'image_regions': image_regions_pil,
'text_mask_base64': f"data:image/png;base64,{text_mask_base64}",
'combined_result': combined_result_pil,
'text_regions_coordinates': text_regions,
'region_images': region_pil_images
}
except Exception as e:
logger.error(f"Error segmenting image {image_file.name}: {str(e)}")
# Return None values if processing fails
return {
'text_regions': None,
'image_regions': None,
'text_mask_base64': None,
'combined_result': None,
'text_regions_coordinates': []
}
def process_segmented_image(image_path: Union[str, Path], output_dir: Optional[Path] = None, preserve_content: bool = True) -> Dict:
"""
Process an image using segmentation for improved OCR, saving visualization outputs.
Args:
image_path: Path to the image file
output_dir: Optional directory to save visualization outputs
Returns:
Dictionary with processing results and paths to output files
"""
# Convert to Path object if string
image_file = Path(image_path) if isinstance(image_path, str) else image_path
# Create output directory if not provided
if output_dir is None:
output_dir = Path("output") / "segmentation"
output_dir.mkdir(parents=True, exist_ok=True)
# Process the image with segmentation
segmentation_results = segment_image_for_ocr(image_file)
# Prepare results dictionary
results = {
'original_image': str(image_file),
'output_files': {}
}
# Save visualization outputs if segmentation was successful
if segmentation_results['text_regions'] is not None:
# Save text regions visualization
text_regions_path = output_dir / f"{image_file.stem}_text_regions.jpg"
segmentation_results['text_regions'].save(text_regions_path)
results['output_files']['text_regions'] = str(text_regions_path)
# Save image regions visualization
image_regions_path = output_dir / f"{image_file.stem}_image_regions.jpg"
segmentation_results['image_regions'].save(image_regions_path)
results['output_files']['image_regions'] = str(image_regions_path)
# Save combined result
combined_path = output_dir / f"{image_file.stem}_combined.jpg"
segmentation_results['combined_result'].save(combined_path)
results['output_files']['combined_result'] = str(combined_path)
# Save text mask visualization
text_mask_path = output_dir / f"{image_file.stem}_text_mask.png"
# Save text mask from base64
if segmentation_results['text_mask_base64']:
base64_data = segmentation_results['text_mask_base64'].split(',')[1]
with open(text_mask_path, 'wb') as f:
f.write(base64.b64decode(base64_data))
results['output_files']['text_mask'] = str(text_mask_path)
# Add detected text regions count
results['text_regions_count'] = len(segmentation_results['text_regions_coordinates'])
results['text_regions_coordinates'] = segmentation_results['text_regions_coordinates']
return results
if __name__ == "__main__":
# Simple test - process a sample image if run directly
import sys
if len(sys.argv) > 1:
image_path = sys.argv[1]
else:
# Default to testing with the magician image
image_path = "input/magician-or-bottle-cungerer.jpg"
logger.info(f"Testing image segmentation on {image_path}")
results = process_segmented_image(image_path)
# Print results summary
logger.info(f"Segmentation complete. Found {results.get('text_regions_count', 0)} text regions.")
logger.info(f"Output files saved to: {[path for path in results.get('output_files', {}).values()]}")