Spaces:
Running
Running
# Standard library imports | |
import os | |
import hashlib | |
import tempfile | |
import logging | |
import time | |
from datetime import datetime | |
from pathlib import Path | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# Third-party imports | |
import streamlit as st | |
# Local application imports | |
from structured_ocr import StructuredOCR | |
# Import from updated utils directory | |
from utils.image_utils import clean_ocr_result | |
# Temporarily retain old utils imports until they are fully migrated | |
from utils import generate_cache_key, timing, format_timestamp, create_descriptive_filename, extract_subject_tags | |
import preprocessing | |
from error_handler import handle_ocr_error, check_file_size | |
from image_segmentation import segment_image_for_ocr, process_segmented_image | |
def process_file_cached(file_path, file_type, use_vision, file_size_mb, cache_key, preprocessing_options_hash=None, custom_prompt=None): | |
""" | |
Cached version of OCR processing to reuse results | |
Args: | |
file_path: Path to the file to process | |
file_type: Type of file (pdf or image) | |
use_vision: Whether to use vision model | |
file_size_mb: File size in MB | |
cache_key: Cache key for the file | |
preprocessing_options_hash: Hash of preprocessing options | |
custom_prompt: Custom prompt to use for OCR | |
Returns: | |
dict: OCR result | |
""" | |
# Initialize OCR processor | |
processor = StructuredOCR() | |
# Process the file | |
with timing(f"OCR processing of {file_type} file"): | |
result = processor.process_file( | |
file_path, | |
file_type=file_type, | |
use_vision=use_vision, | |
file_size_mb=file_size_mb, | |
custom_prompt=custom_prompt | |
) | |
return result | |
def process_file(uploaded_file, use_vision=True, preprocessing_options=None, progress_reporter=None, | |
pdf_dpi=150, max_pages=3, pdf_rotation=0, custom_prompt=None, perf_mode="Quality", | |
use_segmentation=False): | |
""" | |
Process the uploaded file and return the OCR results | |
Args: | |
uploaded_file: The uploaded file to process | |
use_vision: Whether to use vision model | |
preprocessing_options: Dictionary of preprocessing options | |
progress_reporter: ProgressReporter instance for UI updates | |
pdf_dpi: DPI for PDF conversion | |
max_pages: Maximum number of pages to process | |
pdf_rotation: PDF rotation value | |
custom_prompt: Custom prompt for OCR | |
perf_mode: Performance mode (Quality or Speed) | |
Returns: | |
dict: OCR result | |
""" | |
if preprocessing_options is None: | |
preprocessing_options = {} | |
# Create a container for progress indicators if not provided | |
if progress_reporter is None: | |
from ui.ui_components import ProgressReporter | |
progress_reporter = ProgressReporter(st.empty()).setup() | |
# Initialize temporary file paths list | |
temp_file_paths = [] | |
# Also track temporary files in session state for reliable cleanup | |
if 'temp_file_paths' not in st.session_state: | |
st.session_state.temp_file_paths = [] | |
try: | |
# Check if file size exceeds maximum allowed size | |
is_valid, file_size_mb, error_message = check_file_size(uploaded_file.getvalue()) | |
if not is_valid: | |
progress_reporter.complete(success=False) | |
st.error(error_message) | |
return { | |
"file_name": uploaded_file.name, | |
"topics": ["Document"], | |
"languages": ["English"], | |
"error": error_message, | |
"ocr_contents": { | |
"error": error_message, | |
"partial_text": "Document could not be processed due to size limitations." | |
} | |
} | |
# Update progress | |
progress_reporter.update(10, "Initializing OCR processor...") | |
# Determine file type from extension | |
file_ext = Path(uploaded_file.name).suffix.lower() | |
file_type = "pdf" if file_ext == ".pdf" else "image" | |
file_bytes = uploaded_file.getvalue() | |
# For PDFs, we need to handle differently | |
if file_type == "pdf": | |
progress_reporter.update(20, "Preparing PDF document...") | |
# Create a temporary file for processing | |
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=file_ext).name | |
with open(temp_path, 'wb') as f: | |
f.write(file_bytes) | |
temp_file_paths.append(temp_path) | |
# Track temp files in session state for reliable cleanup | |
if temp_path not in st.session_state.temp_file_paths: | |
st.session_state.temp_file_paths.append(temp_path) | |
logger.info(f"Added temp file to session state: {temp_path}") | |
# Generate cache key | |
cache_key = generate_cache_key( | |
file_bytes, | |
file_type, | |
use_vision, | |
preprocessing_options, | |
pdf_rotation, | |
custom_prompt | |
) | |
# Use the document type information from preprocessing options | |
doc_type = preprocessing_options.get("document_type", "standard") | |
modified_custom_prompt = custom_prompt | |
# Enhance the prompt with document-type specific instructions | |
# Check for letterhead/marginalia document types with specialized handling | |
try: | |
from utils.helpers.letterhead_handler import get_letterhead_prompt, is_likely_letterhead | |
# Extract text density features if available | |
features = None | |
if 'text_density' in preprocessing_options: | |
features = preprocessing_options['text_density'] | |
# Check if this looks like a letterhead document | |
if is_likely_letterhead(temp_path, features): | |
# Get specialized letterhead prompt | |
letterhead_prompt = get_letterhead_prompt(temp_path, features) | |
if letterhead_prompt: | |
logger.info(f"Using specialized letterhead prompt for document") | |
modified_custom_prompt = letterhead_prompt | |
# Set document type for tracking | |
preprocessing_options["document_type"] = "letterhead" | |
doc_type = "letterhead" | |
except ImportError: | |
logger.debug("Letterhead handler not available") | |
# Add document-type specific instructions based on preprocessing options | |
if doc_type == "handwritten" and not modified_custom_prompt: | |
modified_custom_prompt = "This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting." | |
elif doc_type == "handwritten" and "handwritten" not in modified_custom_prompt.lower(): | |
modified_custom_prompt += " This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting." | |
elif doc_type == "newspaper" and not modified_custom_prompt: | |
modified_custom_prompt = "This is a newspaper or document with columns. Please extract all text content from each column, maintaining proper reading order." | |
elif doc_type == "newspaper" and "column" not in modified_custom_prompt.lower() and "newspaper" not in modified_custom_prompt.lower(): | |
modified_custom_prompt += " This appears to be a newspaper or document with columns. Please extract all text content from each column." | |
elif doc_type == "book" and not modified_custom_prompt: | |
modified_custom_prompt = "This is a book page. Extract titles, headers, footnotes, and body text, preserving paragraph structure and formatting." | |
# Update the cache key with the modified prompt | |
if modified_custom_prompt != custom_prompt: | |
cache_key = generate_cache_key( | |
open(temp_path, 'rb').read(), | |
file_type, | |
use_vision, | |
preprocessing_options, | |
pdf_rotation, | |
modified_custom_prompt | |
) | |
progress_reporter.update(30, "Processing PDF with enhanced OCR...") | |
# Process with cached function if possible | |
try: | |
result = process_file_cached(temp_path, file_type, use_vision, file_size_mb, cache_key, | |
str(preprocessing_options), modified_custom_prompt) | |
progress_reporter.update(90, "Finalizing results...") | |
except Exception as e: | |
logger.warning(f"Cached processing failed: {str(e)}. Using direct processing.") | |
progress_reporter.update(60, f"Processing error: {str(e)}. Using enhanced PDF processor...") | |
# Import the enhanced PDF processor | |
try: | |
from utils.pdf_ocr import PDFOCR | |
# Use our specialized PDF processor | |
pdf_processor = PDFOCR() | |
# Process with the enhanced PDF processor | |
result = pdf_processor.process_pdf( | |
pdf_path=temp_path, | |
use_vision=use_vision, | |
max_pages=max_pages, | |
custom_prompt=modified_custom_prompt | |
) | |
logger.info("PDF successfully processed with enhanced PDF processor") | |
progress_reporter.update(90, "Finalizing results...") | |
except ImportError: | |
logger.warning("Enhanced PDF processor not available. Falling back to standard processing.") | |
progress_reporter.update(70, "Falling back to standard PDF processing...") | |
# If enhanced processor is not available, fall back to direct StructuredOCR processing | |
processor = StructuredOCR() | |
result = processor.process_file( | |
file_path=temp_path, | |
file_type="pdf", | |
use_vision=use_vision, | |
custom_prompt=modified_custom_prompt, | |
file_size_mb=file_size_mb, | |
max_pages=max_pages | |
) | |
progress_reporter.update(90, "Finalizing results...") | |
else: | |
# For image files | |
progress_reporter.update(20, "Preparing image for processing...") | |
# Apply preprocessing if needed | |
temp_path, preprocessing_applied = preprocessing.apply_preprocessing_to_file( | |
file_bytes, | |
file_ext, | |
preprocessing_options, | |
temp_file_paths | |
) | |
if preprocessing_applied: | |
progress_reporter.update(30, "Applied image preprocessing...") | |
# Apply image segmentation if requested | |
# This is especially helpful for complex documents with mixed text and images | |
if use_segmentation: | |
progress_reporter.update(35, "Applying image segmentation to separate text and image regions...") | |
try: | |
# Perform image segmentation with content preservation if requested | |
preserve_content = preprocessing_options.get("preserve_content", True) | |
segmentation_results = segment_image_for_ocr( | |
temp_path, | |
vision_enabled=use_vision, | |
preserve_content=preserve_content | |
) | |
if segmentation_results['combined_result'] is not None: | |
# Save the segmented result to a new temporary file | |
segmented_temp_path = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg').name | |
segmentation_results['combined_result'].save(segmented_temp_path) | |
temp_file_paths.append(segmented_temp_path) | |
# Check if we have individual region images to process separately | |
if 'region_images' in segmentation_results and segmentation_results['region_images']: | |
# Process each region separately for better results | |
regions_count = len(segmentation_results['region_images']) | |
logger.info(f"Processing {regions_count} text regions individually") | |
progress_reporter.update(40, f"Processing {regions_count} text regions separately...") | |
# Initialize StructuredOCR processor | |
processor = StructuredOCR() | |
# Store individual region results | |
region_results = [] | |
# Process each region individually | |
for idx, region_info in enumerate(segmentation_results['region_images']): | |
# Save region image to temp file | |
region_temp_path = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg').name | |
region_info['pil_image'].save(region_temp_path) | |
temp_file_paths.append(region_temp_path) | |
# Create region-specific prompt | |
region_prompt = f"This is region {idx+1} of {regions_count} from a segmented document. Extract all visible text precisely, preserving line breaks and structure." | |
# Process the region | |
try: | |
region_result = processor.process_file( | |
file_path=region_temp_path, | |
file_type="image", | |
use_vision=use_vision, | |
custom_prompt=region_prompt, | |
file_size_mb=None | |
) | |
# Store result with region info | |
if 'ocr_contents' in region_result and 'raw_text' in region_result['ocr_contents']: | |
region_results.append({ | |
'text': region_result['ocr_contents']['raw_text'], | |
'coordinates': region_info['coordinates'], | |
'order': region_info['order'] | |
}) | |
except Exception as region_err: | |
logger.warning(f"Error processing region {idx+1}: {str(region_err)}") | |
# Sort regions by their order for correct reading flow | |
region_results.sort(key=lambda x: x['order']) | |
# Import the text utilities for intelligent merging | |
try: | |
from utils.text_utils import merge_region_texts | |
# Use intelligent merging to avoid duplication in overlapped regions | |
combined_text = merge_region_texts(region_results) | |
logger.info("Using intelligent text merging for overlapping regions") | |
except ImportError: | |
# Fallback to simple joining if import fails | |
combined_text = "\n\n".join([r['text'] for r in region_results if r['text'].strip()]) | |
logger.warning("Using simple text joining (utils.text_utils not available)") | |
# Store combined results for later use | |
preprocessing_options['segmentation_data'] = { | |
'text_regions_coordinates': segmentation_results.get('text_regions_coordinates', []), | |
'regions_count': regions_count, | |
'segmentation_applied': True, | |
'combined_text': combined_text, | |
'region_results': region_results | |
} | |
logger.info(f"Successfully processed {len(region_results)} text regions") | |
# Set up the temp path to use the segmented image | |
temp_path = segmented_temp_path | |
# IMPORTANT: We've already extracted text from individual regions, | |
# emphasize their importance in our prompt | |
if custom_prompt: | |
# Add strong emphasis on using the already extracted text | |
custom_prompt += f" IMPORTANT: The document has been segmented into {regions_count} text regions that have been processed individually. The text from these regions should be given HIGHEST PRIORITY and used as the primary source of text for the document. The combined image is provided only as supplementary context." | |
else: | |
# Create explicit prompt prioritizing region text | |
custom_prompt = f"CRITICAL: This document has been preprocessed to highlight {regions_count} text regions that have been individually processed. The text from these regions is the PRIMARY source of content and should be prioritized over any text extracted from the combined image. Use the combined image only for context and layout understanding." | |
else: | |
# No individual regions found, use combined result | |
temp_path = segmented_temp_path | |
# Enhanced prompt based on segmentation results | |
regions_count = len(segmentation_results.get('text_regions_coordinates', [])) | |
if custom_prompt: | |
# Add segmentation info to existing prompt | |
custom_prompt += f" The document has been segmented and contains approximately {regions_count} text regions that should be carefully extracted. Please focus on extracting all text from these regions." | |
else: | |
# Create new prompt focused on text extraction from segmented regions | |
custom_prompt = f"This document has been preprocessed to highlight {regions_count} text regions. Please carefully extract all text from these highlighted regions, preserving the reading order and structure." | |
# Store segmentation data in preprocessing options for later use | |
preprocessing_options['segmentation_data'] = { | |
'text_regions_coordinates': segmentation_results.get('text_regions_coordinates', []), | |
'regions_count': regions_count, | |
'segmentation_applied': True | |
} | |
logger.info(f"Image segmentation applied. Found {len(segmentation_results.get('text_regions_coordinates', []))} text regions.") | |
progress_reporter.update(40, f"Identified {len(segmentation_results.get('text_regions_coordinates', []))} text regions for extraction...") | |
else: | |
logger.warning("Image segmentation produced no result, using original image.") | |
except Exception as seg_error: | |
logger.warning(f"Image segmentation failed: {str(seg_error)}. Continuing with standard processing.") | |
# Generate cache key | |
cache_key = generate_cache_key( | |
open(temp_path, 'rb').read(), | |
file_type, | |
use_vision, | |
preprocessing_options, | |
0, # No rotation for images (handled in preprocessing) | |
custom_prompt | |
) | |
# Process the file using cached function if possible | |
progress_reporter.update(50, "Processing document with OCR...") | |
try: | |
# Use the document type from preprocessing options | |
doc_type = preprocessing_options.get("document_type", "standard") | |
modified_custom_prompt = custom_prompt | |
# Check for letterhead/marginalia document types with specialized handling | |
try: | |
from utils.helpers.letterhead_handler import get_letterhead_prompt, is_likely_letterhead | |
# Extract text density features if available | |
features = None | |
if 'text_density' in preprocessing_options: | |
features = preprocessing_options['text_density'] | |
# Check if this looks like a letterhead document | |
if is_likely_letterhead(temp_path, features): | |
# Get specialized letterhead prompt | |
letterhead_prompt = get_letterhead_prompt(temp_path, features) | |
if letterhead_prompt: | |
logger.info(f"Using specialized letterhead prompt for document") | |
modified_custom_prompt = letterhead_prompt | |
# Set document type for tracking | |
preprocessing_options["document_type"] = "letterhead" | |
doc_type = "letterhead" | |
except ImportError: | |
logger.debug("Letterhead handler not available") | |
# Add document-type specific instructions based on preprocessing options | |
if doc_type == "handwritten" and not modified_custom_prompt: | |
modified_custom_prompt = "This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting." | |
elif doc_type == "handwritten" and "handwritten" not in modified_custom_prompt.lower(): | |
modified_custom_prompt += " This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting." | |
elif doc_type == "newspaper" and not modified_custom_prompt: | |
modified_custom_prompt = "This is a newspaper or document with columns. Please extract all text content from each column, maintaining proper reading order." | |
elif doc_type == "newspaper" and "column" not in modified_custom_prompt.lower() and "newspaper" not in modified_custom_prompt.lower(): | |
modified_custom_prompt += " This appears to be a newspaper or document with columns. Please extract all text content from each column." | |
elif doc_type == "book" and not modified_custom_prompt: | |
modified_custom_prompt = "This is a book page. Extract titles, headers, footnotes, and body text, preserving paragraph structure and formatting." | |
# Update the cache key with the modified prompt | |
if modified_custom_prompt != custom_prompt: | |
cache_key = generate_cache_key( | |
open(temp_path, 'rb').read(), | |
file_type, | |
use_vision, | |
preprocessing_options, | |
0, | |
modified_custom_prompt | |
) | |
result = process_file_cached(temp_path, file_type, use_vision, file_size_mb, cache_key, str(preprocessing_options), modified_custom_prompt) | |
progress_reporter.update(80, "Analyzing document structure...") | |
progress_reporter.update(90, "Finalizing results...") | |
except Exception as e: | |
logger.warning(f"Cached processing failed: {str(e)}. Retrying with direct processing.") | |
progress_reporter.update(60, f"Processing error: {str(e)}. Retrying...") | |
# If caching fails, process directly | |
processor = StructuredOCR() | |
# Apply performance mode settings | |
if perf_mode == "Speed": | |
# Use simpler processing for speed | |
pass # Any speed optimizations would be handled by the StructuredOCR class | |
# Use the document type from preprocessing options | |
doc_type = preprocessing_options.get("document_type", "standard") | |
modified_custom_prompt = custom_prompt | |
# Check for letterhead/marginalia document types with specialized handling | |
try: | |
from utils.helpers.letterhead_handler import get_letterhead_prompt, is_likely_letterhead | |
# Extract text density features if available | |
features = None | |
if 'text_density' in preprocessing_options: | |
features = preprocessing_options['text_density'] | |
# Check if this looks like a letterhead document | |
if is_likely_letterhead(temp_path, features): | |
# Get specialized letterhead prompt | |
letterhead_prompt = get_letterhead_prompt(temp_path, features) | |
if letterhead_prompt: | |
logger.info(f"Using specialized letterhead prompt for document") | |
modified_custom_prompt = letterhead_prompt | |
# Set document type for tracking | |
preprocessing_options["document_type"] = "letterhead" | |
doc_type = "letterhead" | |
except ImportError: | |
logger.debug("Letterhead handler not available") | |
# Add document-type specific instructions based on preprocessing options | |
if doc_type == "handwritten" and not modified_custom_prompt: | |
modified_custom_prompt = "This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting." | |
elif doc_type == "handwritten" and "handwritten" not in modified_custom_prompt.lower(): | |
modified_custom_prompt += " This is a handwritten document. Please carefully transcribe all handwritten text, preserving line breaks and original formatting." | |
elif doc_type == "newspaper" and not modified_custom_prompt: | |
modified_custom_prompt = "This is a newspaper or document with columns. Please extract all text content from each column, maintaining proper reading order." | |
elif doc_type == "newspaper" and "column" not in modified_custom_prompt.lower() and "newspaper" not in modified_custom_prompt.lower(): | |
modified_custom_prompt += " This appears to be a newspaper or document with columns. Please extract all text content from each column." | |
elif doc_type == "book" and not modified_custom_prompt: | |
modified_custom_prompt = "This is a book page. Extract titles, headers, footnotes, and body text, preserving paragraph structure and formatting." | |
result = processor.process_file( | |
file_path=temp_path, | |
file_type=file_type, | |
use_vision=use_vision, | |
custom_prompt=modified_custom_prompt, | |
file_size_mb=file_size_mb | |
) | |
progress_reporter.update(90, "Finalizing results...") | |
# Add additional metadata to result | |
result = process_result(result, uploaded_file, preprocessing_options) | |
# Make sure file_type is explicitly set for PDFs | |
if file_type == "pdf": | |
result['file_type'] = "pdf" | |
# Check for duplicated text patterns that indicate handwritten text issues | |
try: | |
from utils.helpers.ocr_text_repair import detect_duplicate_text_issues, get_enhanced_preprocessing_options, get_handwritten_specific_prompt, clean_duplicated_text | |
# Check OCR output for duplication issues | |
if result and 'ocr_contents' in result and 'raw_text' in result['ocr_contents']: | |
ocr_text = result['ocr_contents']['raw_text'] | |
has_duplication, duplication_details = detect_duplicate_text_issues(ocr_text) | |
# If we detect significant duplication in the output | |
if has_duplication and duplication_details.get('duplication_rate', 0) > 0.1: | |
logger.info(f"Detected text duplication issues. Reprocessing as handwritten document with enhanced settings...") | |
progress_reporter.update(75, "Detected duplication issues. Reprocessing with enhanced settings...") | |
# Save original result before reprocessing | |
original_result = result | |
# Get enhanced preprocessing options for handwritten text | |
enhanced_options = get_enhanced_preprocessing_options(preprocessing_options) | |
# Reprocess with enhanced settings and specialized prompt | |
handwritten_prompt = get_handwritten_specific_prompt(custom_prompt) | |
# Process the image with the enhanced settings | |
try: | |
# Apply enhanced preprocessing to the original image | |
enhanced_temp_path, _ = preprocessing.apply_preprocessing_to_file( | |
open(temp_path, 'rb').read(), | |
Path(temp_path).suffix.lower(), | |
enhanced_options, | |
temp_file_paths | |
) | |
# Process with enhanced settings | |
processor = StructuredOCR() | |
enhanced_result = processor.process_file( | |
file_path=enhanced_temp_path, | |
file_type="image", | |
use_vision=use_vision, | |
custom_prompt=handwritten_prompt, | |
file_size_mb=file_size_mb | |
) | |
# Check if the enhanced result is better (less duplication) | |
if 'ocr_contents' in enhanced_result and 'raw_text' in enhanced_result['ocr_contents']: | |
enhanced_text = enhanced_result['ocr_contents']['raw_text'] | |
_, enhanced_issues = detect_duplicate_text_issues(enhanced_text) | |
# Use the enhanced result if it's better | |
if enhanced_issues.get('duplication_rate', 1.0) < duplication_details.get('duplication_rate', 1.0): | |
logger.info("Enhanced processing improved OCR quality. Using enhanced result.") | |
result = enhanced_result | |
# Preserve document type and preprocessing info | |
result['document_type'] = 'handwritten' | |
result['preprocessing'] = enhanced_options | |
else: | |
# If enhancement didn't help, clean up the original result | |
logger.info("Enhanced processing did not improve OCR quality. Cleaning original result.") | |
result = original_result | |
# Clean up duplication in the text | |
if 'ocr_contents' in result and 'raw_text' in result['ocr_contents']: | |
result['ocr_contents']['raw_text'] = clean_duplicated_text(result['ocr_contents']['raw_text']) | |
else: | |
# Fallback to original with cleaning | |
logger.info("Enhanced processing failed. Cleaning original result.") | |
result = original_result | |
# Clean up duplication in the text | |
if 'ocr_contents' in result and 'raw_text' in result['ocr_contents']: | |
result['ocr_contents']['raw_text'] = clean_duplicated_text(result['ocr_contents']['raw_text']) | |
except Exception as enh_error: | |
logger.warning(f"Enhanced processing failed: {str(enh_error)}. Using cleaned original.") | |
# Fallback to original with cleaning | |
result = original_result | |
# Clean up duplication in the text | |
if 'ocr_contents' in result and 'raw_text' in result['ocr_contents']: | |
result['ocr_contents']['raw_text'] = clean_duplicated_text(result['ocr_contents']['raw_text']) | |
except ImportError: | |
logger.debug("OCR text repair module not available") | |
# 🔧 ALWAYS normalize result before returning | |
result = clean_ocr_result( | |
result, | |
use_segmentation=use_segmentation, | |
vision_enabled=use_vision, | |
preprocessing_options=preprocessing_options | |
) | |
# Complete progress | |
progress_reporter.complete() | |
return result | |
except Exception as e: | |
# Handle errors | |
error_message = handle_ocr_error(e, progress_reporter) | |
# Return error result | |
return { | |
"file_name": uploaded_file.name, | |
"topics": ["Document"], | |
"languages": ["English"], | |
"error": error_message, | |
"ocr_contents": { | |
"error": f"Failed to process file: {error_message}", | |
"partial_text": "Document could not be processed due to an error." | |
} | |
} | |
finally: | |
# Clean up temporary files | |
for temp_path in temp_file_paths: | |
try: | |
if os.path.exists(temp_path): | |
os.unlink(temp_path) | |
logger.info(f"Removed temporary file: {temp_path}") | |
except Exception as e: | |
logger.warning(f"Failed to remove temporary file {temp_path}: {str(e)}") | |
def process_result(result, uploaded_file, preprocessing_options=None): | |
""" | |
Process OCR result to add metadata, tags, etc. | |
Args: | |
result: OCR result dictionary | |
uploaded_file: The uploaded file | |
preprocessing_options: Dictionary of preprocessing options | |
Returns: | |
dict: Processed OCR result | |
""" | |
# Add timestamp | |
result['timestamp'] = format_timestamp() | |
# Add processing time if not already present | |
if 'processing_time' not in result: | |
result['processing_time'] = 0.0 | |
# Generate descriptive filename | |
file_ext = Path(uploaded_file.name).suffix.lower() | |
result['descriptive_file_name'] = create_descriptive_filename( | |
uploaded_file.name, | |
result, | |
file_ext, | |
preprocessing_options | |
) | |
# Extract raw text from OCR contents for tag extraction without duplicating content | |
raw_text = "" | |
if 'ocr_contents' in result: | |
# Try fields in order of preference | |
for field in ["raw_text", "content", "text", "transcript", "main_text"]: | |
if field in result['ocr_contents'] and result['ocr_contents'][field]: | |
raw_text = result['ocr_contents'][field] | |
break | |
# Extract subject tags if not already present or enhance existing ones | |
if 'topics' not in result or not result['topics']: | |
result['topics'] = extract_subject_tags(result, raw_text, preprocessing_options) | |
return result | |