Spaces:
Running
Running
# Standard library imports | |
import logging | |
import re | |
from typing import List, Dict, Set, Tuple, Optional, Union, Any | |
from functools import lru_cache | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
class LanguageDetector: | |
""" | |
A language detection system that provides balanced detection across multiple languages | |
using an enhanced statistical approach. | |
""" | |
def __init__(self): | |
"""Initialize the language detector with statistical language models""" | |
logger.info("Initializing language detector with statistical models") | |
# Initialize language indicators dictionary for statistical detection | |
self._init_language_indicators() | |
# Set thresholds for language detection confidence | |
self.single_lang_confidence = 65 # Minimum score to consider a language detected | |
self.secondary_lang_threshold = 0.75 # Secondary language must be at least this fraction of primary score | |
def _init_language_indicators(self): | |
"""Initialize language indicators for statistical detection with historical markers""" | |
# Define indicators for all supported languages with equal detail level | |
# Each language has: | |
# - Distinctive characters | |
# - Common words (including historical forms) | |
# - N-grams (character sequences) | |
# - Historical markers specific to older forms of the language | |
self.language_indicators = { | |
"English": { | |
"chars": [], # English uses basic Latin alphabet without special chars | |
"words": ['the', 'and', 'of', 'to', 'in', 'a', 'is', 'that', 'for', 'it', | |
'with', 'as', 'be', 'on', 'by', 'at', 'this', 'have', 'from', 'or', | |
'an', 'but', 'not', 'what', 'all', 'were', 'when', 'we', 'there', 'can', | |
'would', 'who', 'you', 'been', 'one', 'their', 'has', 'more', 'if', 'no'], | |
"ngrams": ['th', 'he', 'in', 'er', 'an', 're', 'on', 'at', 'en', 'nd', 'ti', 'es', 'or', | |
'ing', 'tion', 'the', 'and', 'tha', 'ent', 'ion'], | |
"historical": { | |
"chars": ['þ', 'ȝ', 'æ', 'ſ'], # Thorn, yogh, ash, long s | |
"words": ['thou', 'thee', 'thy', 'thine', 'hath', 'doth', 'ere', 'whilom', 'betwixt', | |
'ye', 'art', 'wast', 'dost', 'hast', 'shalt', 'mayst', 'verily'], | |
"patterns": ['eth$', '^y[^a-z]', 'ck$', 'aught', 'ought'] # -eth endings, y- prefixes | |
} | |
}, | |
"French": { | |
"chars": ['é', 'è', 'ê', 'à', 'ç', 'ù', 'â', 'î', 'ô', 'û', 'ë', 'ï', 'ü'], | |
"words": ['le', 'la', 'les', 'et', 'en', 'de', 'du', 'des', 'un', 'une', 'ce', 'cette', | |
'ces', 'dans', 'par', 'pour', 'sur', 'qui', 'que', 'quoi', 'où', 'quand', 'comment', | |
'est', 'sont', 'ont', 'nous', 'vous', 'ils', 'elles', 'avec', 'sans', 'mais', 'ou'], | |
"ngrams": ['es', 'le', 'de', 'en', 'on', 'nt', 'qu', 'ai', 'an', 'ou', 'ur', 're', 'me', | |
'les', 'ent', 'que', 'des', 'ons', 'ant', 'ion'], | |
"historical": { | |
"chars": ['ſ', 'æ', 'œ'], # Long s and ligatures | |
"words": ['aultre', 'avecq', 'icelluy', 'oncques', 'moult', 'estre', 'mesme', 'ceste', | |
'ledict', 'celuy', 'ceulx', 'aulcun', 'ainſi', 'touſiours', 'eſtre', | |
'eſt', 'meſme', 'felon', 'auec', 'iufques', 'chofe', 'fcience'], | |
"patterns": ['oi[ts]$', 'oi[re]$', 'f[^aeiou]', 'ff', 'ſ', 'auoit', 'eſtoit', | |
'ſi', 'ſur', 'ſa', 'cy', 'ayant', 'oy', 'uſ', 'auſ'] | |
}, | |
}, | |
"German": { | |
"chars": ['ä', 'ö', 'ü', 'ß'], | |
"words": ['der', 'die', 'das', 'und', 'in', 'zu', 'den', 'ein', 'eine', 'mit', 'ist', 'von', | |
'des', 'sich', 'auf', 'für', 'als', 'auch', 'werden', 'bei', 'durch', 'aus', 'sind', | |
'nicht', 'nur', 'wurde', 'wie', 'wenn', 'aber', 'noch', 'nach', 'so', 'sein', 'über'], | |
"ngrams": ['en', 'er', 'ch', 'de', 'ei', 'in', 'te', 'nd', 'ie', 'ge', 'un', 'sch', 'ich', | |
'den', 'die', 'und', 'der', 'ein', 'ung', 'cht'], | |
"historical": { | |
"chars": ['ſ', 'ů', 'ė', 'ÿ'], | |
"words": ['vnnd', 'vnnd', 'vnter', 'vnd', 'seyn', 'thun', 'auff', 'auß', 'deß', 'diß'], | |
"patterns": ['^v[nd]', 'th', 'vnter', 'ſch'] | |
} | |
}, | |
"Spanish": { | |
"chars": ['á', 'é', 'í', 'ó', 'ú', 'ñ', 'ü', '¿', '¡'], | |
"words": ['el', 'la', 'los', 'las', 'de', 'en', 'y', 'a', 'que', 'por', 'un', 'una', 'no', | |
'es', 'con', 'para', 'su', 'al', 'se', 'del', 'como', 'más', 'pero', 'lo', 'mi', | |
'si', 'ya', 'todo', 'esta', 'cuando', 'hay', 'muy', 'bien', 'sin', 'así'], | |
"ngrams": ['de', 'en', 'os', 'es', 'la', 'ar', 'el', 'er', 'ra', 'as', 'an', 'do', 'or', | |
'que', 'nte', 'los', 'ado', 'con', 'ent', 'ien'], | |
"historical": { | |
"chars": ['ſ', 'ç', 'ñ'], | |
"words": ['facer', 'fijo', 'fermoso', 'agora', 'asaz', 'aver', 'caſa', 'deſde', 'eſte', | |
'eſta', 'eſto', 'deſto', 'deſta', 'eſſo', 'muger', 'dixo', 'fazer'], | |
"patterns": ['^f[aei]', 'ſſ', 'ſc', '^deſ', 'xo$', 'xe$'] | |
}, | |
}, | |
"Italian": { | |
"chars": ['à', 'è', 'é', 'ì', 'í', 'ò', 'ó', 'ù', 'ú'], | |
"words": ['il', 'la', 'i', 'le', 'e', 'di', 'a', 'in', 'che', 'non', 'per', 'con', 'un', | |
'una', 'del', 'della', 'è', 'sono', 'da', 'si', 'come', 'anche', 'più', 'ma', 'ci', | |
'se', 'ha', 'mi', 'lo', 'ti', 'al', 'tu', 'questo', 'questi'], | |
"ngrams": ['di', 'la', 'er', 'to', 're', 'co', 'de', 'in', 'ra', 'on', 'li', 'no', 'ri', | |
'che', 'ent', 'con', 'per', 'ion', 'ato', 'lla'] | |
}, | |
"Portuguese": { | |
"chars": ['á', 'â', 'ã', 'à', 'é', 'ê', 'í', 'ó', 'ô', 'õ', 'ú', 'ç'], | |
"words": ['o', 'a', 'os', 'as', 'de', 'em', 'e', 'do', 'da', 'dos', 'das', 'no', 'na', | |
'para', 'que', 'um', 'uma', 'por', 'com', 'se', 'não', 'mais', 'como', 'mas', | |
'você', 'eu', 'este', 'isso', 'ele', 'seu', 'sua', 'ou', 'já', 'me'], | |
"ngrams": ['de', 'os', 'em', 'ar', 'es', 'ra', 'do', 'da', 'en', 'co', 'nt', 'ad', 'to', | |
'que', 'nto', 'ent', 'com', 'ção', 'ado', 'ment'] | |
}, | |
"Dutch": { | |
"chars": ['ë', 'ï', 'ö', 'ü', 'é', 'è', 'ê', 'ç', 'á', 'à', 'ä', 'ó', 'ô', 'ú', 'ù', 'û', 'ij'], | |
"words": ['de', 'het', 'een', 'en', 'van', 'in', 'is', 'dat', 'op', 'te', 'zijn', 'met', | |
'voor', 'niet', 'aan', 'er', 'die', 'maar', 'dan', 'ik', 'je', 'hij', 'zij', 'we', | |
'kunnen', 'wordt', 'nog', 'door', 'over', 'als', 'uit', 'bij', 'om', 'ook'], | |
"ngrams": ['en', 'de', 'er', 'ee', 'ge', 'an', 'aa', 'in', 'te', 'et', 'ng', 'ee', 'or', | |
'van', 'het', 'een', 'ing', 'ver', 'den', 'sch'] | |
}, | |
"Russian": { | |
# Russian (Cyrillic alphabet) characters | |
"chars": ['а', 'б', 'в', 'г', 'д', 'е', 'ё', 'ж', 'з', 'и', 'й', 'к', 'л', 'м', 'н', 'о', 'п', | |
'р', 'с', 'т', 'у', 'ф', 'х', 'ц', 'ч', 'ш', 'щ', 'ъ', 'ы', 'ь', 'э', 'ю', 'я'], | |
"words": ['и', 'в', 'не', 'на', 'что', 'я', 'с', 'а', 'то', 'он', 'как', 'этот', 'по', | |
'но', 'из', 'к', 'у', 'за', 'вы', 'все', 'так', 'же', 'от', 'для', 'о', 'его', | |
'мы', 'было', 'она', 'бы', 'мне', 'еще', 'есть', 'быть', 'был'], | |
"ngrams": ['о', 'е', 'а', 'н', 'и', 'т', 'р', 'с', 'в', 'л', 'к', 'м', 'д', | |
'ст', 'но', 'то', 'ни', 'на', 'по', 'ет'] | |
}, | |
"Chinese": { | |
"chars": ['的', '是', '不', '了', '在', '和', '有', '我', '们', '人', '这', '上', '中', | |
'个', '大', '来', '到', '国', '时', '要', '地', '出', '会', '可', '也', '就', | |
'年', '生', '对', '能', '自', '那', '都', '得', '说', '过', '子', '家', '后', '多'], | |
# Chinese doesn't have "words" in the same way as alphabetic languages | |
"words": ['的', '是', '不', '了', '在', '和', '有', '我', '们', '人', '这', '上', '中', | |
'个', '大', '来', '到', '国', '时', '要', '地', '出', '会', '可', '也', '就'], | |
"ngrams": ['的', '是', '不', '了', '在', '我', '有', '和', '人', '这', '中', '大', '来', '上', | |
'国', '个', '到', '说', '们', '为'] | |
}, | |
"Japanese": { | |
# A mix of hiragana, katakana, and common kanji | |
"chars": ['あ', 'い', 'う', 'え', 'お', 'か', 'き', 'く', 'け', 'こ', 'さ', 'し', 'す', 'せ', 'そ', | |
'ア', 'イ', 'ウ', 'エ', 'オ', 'カ', 'キ', 'ク', 'ケ', 'コ', 'サ', 'シ', 'ス', 'セ', 'ソ', | |
'日', '本', '人', '大', '小', '中', '山', '川', '田', '子', '女', '男', '月', '火', '水'], | |
"words": ['は', 'を', 'に', 'の', 'が', 'で', 'へ', 'から', 'より', 'まで', 'だ', 'です', 'した', | |
'ます', 'ません', 'です', 'これ', 'それ', 'あれ', 'この', 'その', 'あの', 'わたし'], | |
"ngrams": ['の', 'は', 'た', 'が', 'を', 'に', 'て', 'で', 'と', 'し', 'か', 'ま', 'こ', 'い', | |
'する', 'いる', 'れる', 'なる', 'れて', 'した'] | |
}, | |
"Korean": { | |
"chars": ['가', '나', '다', '라', '마', '바', '사', '아', '자', '차', '카', '타', '파', '하', | |
'그', '는', '을', '이', '에', '에서', '로', '으로', '와', '과', '또는', '하지만'], | |
"words": ['이', '그', '저', '나', '너', '우리', '그들', '이것', '그것', '저것', '은', '는', | |
'이', '가', '을', '를', '에', '에서', '으로', '로', '와', '과', '의', '하다', '되다'], | |
"ngrams": ['이', '다', '는', '에', '하', '고', '지', '서', '의', '가', '을', '로', '을', '으', | |
'니다', '습니', '하는', '이다', '에서', '하고'] | |
}, | |
"Arabic": { | |
"chars": ['ا', 'ب', 'ت', 'ث', 'ج', 'ح', 'خ', 'د', 'ذ', 'ر', 'ز', 'س', 'ش', 'ص', 'ض', | |
'ط', 'ظ', 'ع', 'غ', 'ف', 'ق', 'ك', 'ل', 'م', 'ن', 'ه', 'و', 'ي', 'ء', 'ة', 'ى'], | |
"words": ['في', 'من', 'على', 'إلى', 'هذا', 'هذه', 'ذلك', 'تلك', 'هو', 'هي', 'هم', 'أنا', | |
'أنت', 'نحن', 'كان', 'كانت', 'يكون', 'لا', 'لم', 'ما', 'أن', 'و', 'أو', 'ثم', 'بعد'], | |
"ngrams": ['ال', 'ان', 'في', 'من', 'ون', 'ين', 'ات', 'ار', 'ور', 'ما', 'لا', 'ها', 'ان', | |
'الم', 'لان', 'علا', 'الح', 'الس', 'الع', 'الت'] | |
}, | |
"Hindi": { | |
"chars": ['अ', 'आ', 'इ', 'ई', 'उ', 'ऊ', 'ए', 'ऐ', 'ओ', 'औ', 'क', 'ख', 'ग', 'घ', 'ङ', | |
'च', 'छ', 'ज', 'झ', 'ञ', 'ट', 'ठ', 'ड', 'ढ', 'ण', 'त', 'थ', 'द', 'ध', 'न', | |
'प', 'फ', 'ब', 'भ', 'म', 'य', 'र', 'ल', 'व', 'श', 'ष', 'स', 'ह', 'ा', 'ि', 'ी', | |
'ु', 'ू', 'े', 'ै', 'ो', 'ौ', '्', 'ं', 'ः'], | |
"words": ['और', 'का', 'के', 'की', 'एक', 'में', 'है', 'यह', 'हैं', 'से', 'को', 'पर', 'इस', | |
'हो', 'गया', 'कर', 'मैं', 'या', 'हुआ', 'था', 'वह', 'अपने', 'सकता', 'ने', 'बहुत'], | |
"ngrams": ['का', 'के', 'की', 'है', 'ने', 'से', 'मे', 'को', 'पर', 'हा', 'रा', 'ता', 'या', | |
'ार', 'ान', 'कार', 'राज', 'ारा', 'जाए', 'ेजा'] | |
}, | |
"Latin": { | |
"chars": [], # Latin uses basic Latin alphabet | |
"words": ['et', 'in', 'ad', 'est', 'sunt', 'non', 'cum', 'sed', 'qui', 'quod', 'ut', 'si', | |
'nec', 'ex', 'per', 'quam', 'pro', 'iam', 'hoc', 'aut', 'esse', 'enim', 'de', | |
'atque', 'ac', 'ante', 'post', 'sub', 'ab'], | |
"ngrams": ['us', 'is', 'um', 'er', 'it', 'nt', 'am', 'em', 're', 'at', 'ti', 'es', 'ur', | |
'tur', 'que', 'ere', 'ent', 'ius', 'rum', 'tus'] | |
}, | |
"Greek": { | |
"chars": ['α', 'β', 'γ', 'δ', 'ε', 'ζ', 'η', 'θ', 'ι', 'κ', 'λ', 'μ', 'ν', 'ξ', 'ο', 'π', | |
'ρ', 'σ', 'ς', 'τ', 'υ', 'φ', 'χ', 'ψ', 'ω', 'ά', 'έ', 'ή', 'ί', 'ό', 'ύ', 'ώ'], | |
"words": ['και', 'του', 'της', 'των', 'στο', 'στη', 'με', 'από', 'για', 'είναι', 'να', | |
'ότι', 'δεν', 'στον', 'μια', 'που', 'ένα', 'έχει', 'θα', 'το', 'ο', 'η', 'τον'], | |
"ngrams": ['αι', 'τα', 'ου', 'τη', 'οι', 'το', 'ης', 'αν', 'ος', 'ον', 'ις', 'ει', 'ερ', | |
'και', 'την', 'τον', 'ους', 'νου', 'εντ', 'μεν'] | |
} | |
} | |
def detect_languages(self, text: str, filename: str = None, current_languages: List[str] = None) -> List[str]: | |
""" | |
Detect languages in text using an enhanced statistical approach | |
Args: | |
text: Text to analyze | |
filename: Optional filename to provide additional context | |
current_languages: Optional list of languages already detected | |
Returns: | |
List of detected languages | |
""" | |
logger = logging.getLogger("language_detector") | |
# If no text provided, return current languages or default | |
if not text or len(text.strip()) < 10: | |
return current_languages if current_languages else ["English"] | |
# If we already have detected languages, use them | |
if current_languages and len(current_languages) > 0: | |
logger.info(f"Using already detected languages: {current_languages}") | |
return current_languages | |
# Use enhanced statistical detection | |
detected_languages = self._detect_statistically(text, filename) | |
logger.info(f"Statistical language detection results: {detected_languages}") | |
return detected_languages | |
def _detect_statistically(self, text: str, filename: str = None) -> List[str]: | |
""" | |
Detect languages using enhanced statistical analysis with historical language indicators | |
Args: | |
text: Text to analyze | |
filename: Optional filename for additional context | |
Returns: | |
List of detected languages | |
""" | |
logger = logging.getLogger("language_detector") | |
# Normalize text to lowercase for consistent analysis | |
text_lower = text.lower() | |
words = re.findall(r'\b\w+\b', text_lower) # Extract words | |
# Score each language based on characters, words, n-grams, and historical markers | |
language_scores = {} | |
historical_bonus = {} | |
# PHASE 1: Special character analysis | |
# Count special characters for each language | |
special_char_counts = {} | |
total_special_chars = 0 | |
for language, indicators in self.language_indicators.items(): | |
chars = indicators["chars"] | |
count = 0 | |
for char in chars: | |
if char in text_lower: | |
count += text_lower.count(char) | |
special_char_counts[language] = count | |
total_special_chars += count | |
# Normalize character scores (0-30 points) | |
for language, count in special_char_counts.items(): | |
if total_special_chars > 0: | |
# Scale score to 0-30 range (reduced from 35 to make room for historical) | |
normalized_score = (count / total_special_chars) * 30 | |
language_scores[language] = normalized_score | |
else: | |
language_scores[language] = 0 | |
# PHASE 2: Word analysis (0-30 points) | |
# Count common words for each language | |
for language, indicators in self.language_indicators.items(): | |
word_list = indicators["words"] | |
word_matches = sum(1 for word in words if word in word_list) | |
# Normalize word score based on text length and word list size | |
word_score_factor = min(1.0, word_matches / (len(words) * 0.1)) # Max 1.0 if 10% match | |
language_scores[language] = language_scores.get(language, 0) + (word_score_factor * 30) | |
# PHASE 3: N-gram analysis (0-20 points) | |
for language, indicators in self.language_indicators.items(): | |
ngram_list = indicators["ngrams"] | |
ngram_matches = 0 | |
# Count ngram occurrences | |
for ngram in ngram_list: | |
ngram_matches += text_lower.count(ngram) | |
# Normalize ngram score based on text length | |
if len(text_lower) > 0: | |
ngram_score_factor = min(1.0, ngram_matches / (len(text_lower) * 0.05)) # Max 1.0 if 5% match | |
language_scores[language] = language_scores.get(language, 0) + (ngram_score_factor * 20) | |
# PHASE 4: Historical language markers (0-20 points) | |
for language, indicators in self.language_indicators.items(): | |
if "historical" in indicators: | |
historical_indicators = indicators["historical"] | |
historical_score = 0 | |
# Check for historical chars | |
if "chars" in historical_indicators: | |
for char in historical_indicators["chars"]: | |
if char in text_lower: | |
historical_score += text_lower.count(char) * 0.5 | |
# Check for historical words | |
if "words" in historical_indicators: | |
hist_words = historical_indicators["words"] | |
hist_word_matches = sum(1 for word in words if word in hist_words) | |
if hist_word_matches > 0: | |
# Historical words are strong indicators | |
historical_score += min(10, hist_word_matches * 2) | |
# Check for historical patterns | |
if "patterns" in historical_indicators: | |
for pattern in historical_indicators["patterns"]: | |
matches = len(re.findall(pattern, text_lower)) | |
if matches > 0: | |
historical_score += min(5, matches * 0.5) | |
# Cap historical score at 20 points | |
historical_score = min(20, historical_score) | |
historical_bonus[language] = historical_score | |
# Apply historical bonus | |
language_scores[language] += historical_score | |
# Apply language-specific exclusivity multiplier if present | |
if "exclusivity" in indicators: | |
exclusivity = indicators["exclusivity"] | |
language_scores[language] *= exclusivity | |
logger.info(f"Applied exclusivity multiplier {exclusivity} to {language}") | |
# Print historical bonus for debugging | |
for language, bonus in historical_bonus.items(): | |
if bonus > 0: | |
logger.info(f"Historical language bonus for {language}: {bonus} points") | |
# Final language selection with more stringent criteria | |
# Get languages with scores above threshold | |
threshold = self.single_lang_confidence # Higher minimum score | |
candidates = [(lang, score) for lang, score in language_scores.items() if score >= threshold] | |
candidates.sort(key=lambda x: x[1], reverse=True) | |
logger.info(f"Language candidates: {candidates}") | |
# If we have candidate languages, return top 1-2 with higher threshold for secondary | |
if candidates: | |
# Always take top language | |
result = [candidates[0][0]] | |
# Add second language only if it's significantly strong compared to primary | |
# and doesn't have a historical/exclusivity conflict | |
if len(candidates) > 1: | |
primary_lang = candidates[0][0] | |
secondary_lang = candidates[1][0] | |
primary_score = candidates[0][1] | |
secondary_score = candidates[1][1] | |
# Only add secondary if it meets threshold and doesn't conflict | |
ratio = secondary_score / primary_score | |
# Check for French and Spanish conflict (historical French often gets misidentified) | |
historical_conflict = False | |
if (primary_lang == "French" and secondary_lang == "Spanish" and | |
historical_bonus.get("French", 0) > 5): | |
historical_conflict = True | |
logger.info("Historical French markers detected, suppressing Spanish detection") | |
if ratio >= self.secondary_lang_threshold and not historical_conflict: | |
result.append(secondary_lang) | |
logger.info(f"Added secondary language {secondary_lang} (score ratio: {ratio:.2f})") | |
else: | |
logger.info(f"Rejected secondary language {secondary_lang} (score ratio: {ratio:.2f})") | |
return result | |
# Default to English if no clear signals | |