# config.py """ Configuration file for Mistral OCR processing. Contains API key and other settings. """ import os import logging from dotenv import load_dotenv # Configure logging logger = logging.getLogger("config") # Load environment variables from .env file if it exists load_dotenv() # Mistral API key handling - get from Hugging Face secrets or environment variable # The priority order is: # 1. HF_MISTRAL_API_KEY environment var (for Hugging Face deployment) # 2. MISTRAL_API_KEY environment var (standard environment variable) # 3. Empty string (will show warning in app) MISTRAL_API_KEY = os.environ.get("HF_MISTRAL_API_KEY", os.environ.get("MISTRAL_API_KEY", "sfSLqRdW31yxodeYFz3m7Ky83X2V7jUH")).strip() # Check if we're in test mode (allows operation without valid API key) # Set to False to use actual API calls TEST_MODE = False # Just check if API key exists if not MISTRAL_API_KEY and not TEST_MODE: logger.warning("No Mistral API key found. OCR functionality will not work unless TEST_MODE is enabled.") if TEST_MODE: logger.info("TEST_MODE is enabled. Using mock responses instead of actual API calls.") # Model settings with fallbacks OCR_MODEL = os.environ.get("MISTRAL_OCR_MODEL", "mistral-ocr-latest") TEXT_MODEL = os.environ.get("MISTRAL_TEXT_MODEL", "mistral-small-latest") # Updated from ministral-8b-latest VISION_MODEL = os.environ.get("MISTRAL_VISION_MODEL", "mistral-small-latest") # Using faster model that supports vision # Image preprocessing settings optimized for historical documents # These can be customized from environment variables IMAGE_PREPROCESSING = { "enhance_contrast": float(os.environ.get("ENHANCE_CONTRAST", "1.8")), # Increased contrast for better text recognition "sharpen": os.environ.get("SHARPEN", "True").lower() in ("true", "1", "yes"), "denoise": os.environ.get("DENOISE", "True").lower() in ("true", "1", "yes"), "max_size_mb": float(os.environ.get("MAX_IMAGE_SIZE_MB", "12.0")), # Increased size limit for better quality "target_dpi": int(os.environ.get("TARGET_DPI", "300")), # Target DPI for scaling "compression_quality": int(os.environ.get("COMPRESSION_QUALITY", "95")), # Higher quality for better OCR results # Enhanced settings for handwritten documents "handwritten": { "contrast": float(os.environ.get("HANDWRITTEN_CONTRAST", "1.2")), # Lower contrast for handwritten text "block_size": int(os.environ.get("HANDWRITTEN_BLOCK_SIZE", "21")), # Larger block size for adaptive thresholding "constant": int(os.environ.get("HANDWRITTEN_CONSTANT", "5")), # Lower constant for adaptive thresholding "use_dilation": os.environ.get("HANDWRITTEN_DILATION", "True").lower() in ("true", "1", "yes"), # Connect broken strokes "clahe_limit": float(os.environ.get("HANDWRITTEN_CLAHE_LIMIT", "2.0")), # CLAHE limit for local contrast "bilateral_d": int(os.environ.get("HANDWRITTEN_BILATERAL_D", "5")), # Bilateral filter window size "bilateral_sigma1": int(os.environ.get("HANDWRITTEN_BILATERAL_SIGMA1", "25")), # Color sigma "bilateral_sigma2": int(os.environ.get("HANDWRITTEN_BILATERAL_SIGMA2", "45")) # Space sigma } } # OCR settings optimized for single-page performance OCR_SETTINGS = { "timeout_ms": int(os.environ.get("OCR_TIMEOUT_MS", "45000")), # Shorter timeout for single pages (45 seconds) "max_retries": int(os.environ.get("OCR_MAX_RETRIES", "2")), # Fewer retries to avoid rate-limiting "retry_delay": int(os.environ.get("OCR_RETRY_DELAY", "1")), # Shorter initial retry delay for faster execution "include_image_base64": os.environ.get("INCLUDE_IMAGE_BASE64", "True").lower() in ("true", "1", "yes"), "thread_count": int(os.environ.get("OCR_THREAD_COUNT", "2")) # Lower thread count to prevent API rate limiting }