import streamlit as st import os import io import base64 from datetime import datetime from pathlib import Path import json from constants import ( DOCUMENT_TYPES, DOCUMENT_LAYOUTS, CUSTOM_PROMPT_TEMPLATES, LAYOUT_PROMPT_ADDITIONS, DEFAULT_PDF_DPI, MIN_PDF_DPI, MAX_PDF_DPI, DEFAULT_MAX_PAGES, PERFORMANCE_MODES, PREPROCESSING_DOC_TYPES, ROTATION_OPTIONS ) from utils import get_base64_from_image, extract_subject_tags class ProgressReporter: """Class to handle progress reporting in the UI""" def __init__(self, placeholder): self.placeholder = placeholder self.progress_bar = None self.status_text = None def setup(self): """Setup the progress components""" with self.placeholder.container(): self.progress_bar = st.progress(0) self.status_text = st.empty() return self def update(self, percent, status_text): """Update the progress bar and status text""" if self.progress_bar is not None: self.progress_bar.progress(percent / 100) if self.status_text is not None: self.status_text.text(status_text) def complete(self, success=True): """Complete the progress reporting""" if success: if self.progress_bar is not None: self.progress_bar.progress(100) if self.status_text is not None: self.status_text.text("Processing complete!") else: if self.status_text is not None: self.status_text.text("Processing failed.") # Clear the progress components after a delay import time time.sleep(0.8) # Short delay to show completion if self.progress_bar is not None: self.progress_bar.empty() if self.status_text is not None: self.status_text.empty() def create_sidebar_options(): """Create and return sidebar options""" with st.sidebar: st.title("OCR Settings") # Create a container for the sidebar options with st.container(): # Model selection st.subheader("Model Selection") use_vision = st.toggle("Use Vision Model", value=True, help="Use vision model for better understanding of document structure") # Document type selection st.subheader("Document Type") doc_type = st.selectbox("Document Type", DOCUMENT_TYPES, help="Select the type of document you're processing for better results") # Document layout doc_layout = st.selectbox("Document Layout", DOCUMENT_LAYOUTS, help="Select the layout of your document") # Custom prompt custom_prompt = "" if doc_type != DOCUMENT_TYPES[0]: # Not auto-detect # Get the template for the selected document type prompt_template = CUSTOM_PROMPT_TEMPLATES.get(doc_type, "") # Add layout information if not standard if doc_layout != DOCUMENT_LAYOUTS[0]: # Not standard layout layout_addition = LAYOUT_PROMPT_ADDITIONS.get(doc_layout, "") if layout_addition: prompt_template += " " + layout_addition # Set the custom prompt custom_prompt = prompt_template # Allow user to edit the prompt st.markdown("**Custom Processing Instructions**") custom_prompt = st.text_area("", value=custom_prompt, help="Customize the instructions for processing this document", height=100) # Image preprocessing options in an expandable section with st.expander("Image Preprocessing"): # Grayscale conversion grayscale = st.checkbox("Convert to Grayscale", value=False, help="Convert color images to grayscale for better OCR") # Denoise denoise = st.checkbox("Denoise Image", value=False, help="Remove noise from the image") # Contrast adjustment contrast = st.slider("Contrast Adjustment", min_value=-50, max_value=50, value=0, step=10, help="Adjust image contrast") # Rotation rotation = st.slider("Rotation", min_value=-45, max_value=45, value=0, step=5, help="Rotate image if needed") # Create preprocessing options dictionary preprocessing_options = { "document_type": "standard", # Use standard as default, removed duplicate option "grayscale": grayscale, "denoise": denoise, "contrast": contrast, "rotation": rotation } # PDF-specific options in an expandable section with st.expander("PDF Options"): pdf_dpi = st.slider("PDF Resolution (DPI)", min_value=MIN_PDF_DPI, max_value=MAX_PDF_DPI, value=DEFAULT_PDF_DPI, step=25, help="Higher DPI gives better quality but slower processing") max_pages = st.number_input("Maximum Pages to Process", min_value=1, max_value=20, value=DEFAULT_MAX_PAGES, help="Limit the number of pages to process (for multi-page PDFs)") pdf_rotation = st.radio("PDF Rotation", ROTATION_OPTIONS, horizontal=True, format_func=lambda x: f"{x}°", help="Rotate PDF pages if needed") # Create options dictionary options = { "use_vision": use_vision, "perf_mode": "Quality", # Default to Quality, removed performance mode option "pdf_dpi": pdf_dpi, "max_pages": max_pages, "pdf_rotation": pdf_rotation, "custom_prompt": custom_prompt, "preprocessing_options": preprocessing_options } return options def create_file_uploader(): """Create and return a file uploader""" # Add app description favicon_path = os.path.join(os.path.dirname(__file__), "static/favicon.png") favicon_base64 = get_base64_from_image(favicon_path) st.markdown(f'
Scroll Icon

Historical Document OCR

', unsafe_allow_html=True) st.markdown("

Made possible by Mistral AI

", unsafe_allow_html=True) # Add project framing st.markdown(""" This tool is designed to assist scholars in historical research by extracting text from challenging documents. While it may not achieve 100% accuracy for all materials, it serves as a valuable research aid for navigating historical documents, particularly: - **Historical newspapers** with complex layouts and aged text - **Handwritten documents** from various time periods - **Photos of archival materials** that may be difficult to read Upload a document to get started, or explore the example documents. """) # Create file uploader uploaded_file = st.file_uploader( "Upload a document", type=["pdf", "png", "jpg", "jpeg"], help="Upload a PDF or image file for OCR processing" ) return uploaded_file def display_results(result, container, custom_prompt=""): """Display OCR results in the provided container""" with container: # Display document metadata st.subheader("Document Metadata") # Create columns for metadata meta_col1, meta_col2 = st.columns(2) with meta_col1: # Display document type and languages if 'detected_document_type' in result: st.write(f"**Document Type:** {result['detected_document_type']}") if 'languages' in result: languages = [lang for lang in result['languages'] if lang is not None] if languages: st.write(f"**Languages:** {', '.join(languages)}") with meta_col2: # Display processing time if 'processing_time' in result: st.write(f"**Processing Time:** {result['processing_time']:.1f}s") # Display page information for PDFs if 'limited_pages' in result: st.info(f"Processed {result['limited_pages']['processed']} of {result['limited_pages']['total']} pages") # Display subject tags if available if 'topics' in result and result['topics']: st.write("**Subject Tags:**") # Create a container with flex display for the tags st.markdown('
', unsafe_allow_html=True) # Generate a badge for each tag for topic in result['topics']: # Create colored badge based on tag category badge_color = "#546e7a" # Default color # Assign colors by category if any(term in topic.lower() for term in ["century", "pre-", "era", "historical"]): badge_color = "#1565c0" # Blue for time periods elif any(term in topic.lower() for term in ["language", "english", "french", "german", "latin"]): badge_color = "#00695c" # Teal for languages elif any(term in topic.lower() for term in ["letter", "newspaper", "book", "form", "document", "recipe"]): badge_color = "#6a1b9a" # Purple for document types elif any(term in topic.lower() for term in ["travel", "military", "science", "medicine", "education", "art", "literature"]): badge_color = "#2e7d32" # Green for subject domains elif any(term in topic.lower() for term in ["preprocessed", "enhanced", "grayscale", "denoised", "contrast", "rotated"]): badge_color = "#e65100" # Orange for preprocessing-related tags st.markdown( f'{topic}', unsafe_allow_html=True ) # Close the container st.markdown('
', unsafe_allow_html=True) # Display OCR content st.subheader("OCR Content") # Check if we have OCR content if 'ocr_contents' in result: # Create tabs for different views has_images = result.get('has_images', False) if has_images: content_tab1, content_tab2, content_tab3 = st.tabs(["Structured View", "Raw Text", "With Images"]) else: content_tab1, content_tab2 = st.tabs(["Structured View", "Raw Text"]) with content_tab1: # Display structured content if isinstance(result['ocr_contents'], dict): for section, content in result['ocr_contents'].items(): if content and section not in ['error', 'raw_text', 'partial_text']: # Skip error and raw text sections st.markdown(f"#### {section.replace('_', ' ').title()}") if isinstance(content, str): st.write(content) elif isinstance(content, list): for item in content: if isinstance(item, str): st.write(f"- {item}") else: st.write(f"- {str(item)}") elif isinstance(content, dict): for k, v in content.items(): st.write(f"**{k}:** {v}") with content_tab2: # Display raw text with editing capability raw_text = "" if 'raw_text' in result['ocr_contents']: raw_text = result['ocr_contents']['raw_text'] elif 'content' in result['ocr_contents']: raw_text = result['ocr_contents']['content'] # Allow editing of the raw text edited_text = st.text_area("Edit Raw Text", raw_text, height=400) # Add a button to copy the edited text to clipboard if st.button("Copy to Clipboard"): st.success("Text copied to clipboard! (You can paste it elsewhere)") # Note: The actual clipboard functionality is handled by the browser # Add a download button for the edited text st.download_button( label="Download Edited Text", data=edited_text, file_name=f"{result.get('file_name', 'document').split('.')[0]}_edited.txt", mime="text/plain" ) if has_images and 'pages_data' in result: with content_tab3: # Use the display_document_with_images function display_document_with_images(result) # Display custom prompt if provided if custom_prompt: with st.expander("Custom Processing Instructions"): st.write(custom_prompt) # Add download buttons st.subheader("Download Results") # Create columns for download buttons download_col1, download_col2 = st.columns(2) with download_col1: # JSON download try: json_str = json.dumps(result, indent=2) st.download_button( label="Download JSON", data=json_str, file_name=f"{result.get('file_name', 'document').split('.')[0]}_ocr.json", mime="application/json" ) except Exception as e: st.error(f"Error creating JSON download: {str(e)}") with download_col2: # Text download try: if 'ocr_contents' in result: if 'raw_text' in result['ocr_contents']: text_content = result['ocr_contents']['raw_text'] elif 'content' in result['ocr_contents']: text_content = result['ocr_contents']['content'] else: text_content = str(result['ocr_contents']) else: text_content = "No text content available." st.download_button( label="Download Text", data=text_content, file_name=f"{result.get('file_name', 'document').split('.')[0]}_ocr.txt", mime="text/plain" ) except Exception as e: st.error(f"Error creating text download: {str(e)}") def display_document_with_images(result): """Display document with images""" if 'pages_data' not in result: st.info("No image data available.") return # Display each page for i, page_data in enumerate(result['pages_data']): st.markdown(f"### Page {i+1}") # Create columns for image and text img_col, text_col = st.columns([1, 1]) with img_col: # Display the image if 'image_data' in page_data: try: # Convert base64 to image image_data = base64.b64decode(page_data['image_data']) st.image(io.BytesIO(image_data), use_container_width=True) except Exception as e: st.error(f"Error displaying image: {str(e)}") else: st.info("No image available for this page.") with text_col: # Display the text with editing capability if 'text' in page_data: edited_text = st.text_area(f"Page {i+1} Text", page_data['text'], height=300, key=f"page_text_{i}") # Add a button to copy the edited text to clipboard if st.button(f"Copy Page {i+1} Text", key=f"copy_btn_{i}"): st.success(f"Page {i+1} text copied to clipboard!") else: st.info("No text available for this page.") def display_previous_results(): """Display previous results tab content""" st.markdown('

Previous Results

', unsafe_allow_html=True) # Load custom CSS for Previous Results tab try: from ui.layout import load_css load_css() except ImportError: # If ui.layout module is not available, use a simplified version st.markdown(""" """, unsafe_allow_html=True) # Display previous results if available if not st.session_state.previous_results: st.markdown("""
📄

No Previous Results

Process a document to see your results history saved here.

""", unsafe_allow_html=True) else: # Create a container for the results list st.markdown('
', unsafe_allow_html=True) st.markdown(f'

{len(st.session_state.previous_results)} Previous Results

', unsafe_allow_html=True) # Create two columns for filters and download buttons filter_col, download_col = st.columns([2, 1]) with filter_col: # Add filter options filter_options = ["All Types"] if any(result.get("file_name", "").lower().endswith(".pdf") for result in st.session_state.previous_results): filter_options.append("PDF Documents") if any(result.get("file_name", "").lower().endswith((".jpg", ".jpeg", ".png")) for result in st.session_state.previous_results): filter_options.append("Images") selected_filter = st.selectbox("Filter by Type:", filter_options) with download_col: # Add download all button for results if len(st.session_state.previous_results) > 0: try: # Create buffer in memory instead of file on disk import io from ocr_utils import create_results_zip_in_memory # Get zip data directly in memory zip_data = create_results_zip_in_memory(st.session_state.previous_results) # Create more informative ZIP filename with timestamp timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # Count document types for a more descriptive filename pdf_count = sum(1 for r in st.session_state.previous_results if r.get('file_name', '').lower().endswith('.pdf')) img_count = sum(1 for r in st.session_state.previous_results if r.get('file_name', '').lower().endswith(('.jpg', '.jpeg', '.png'))) # Create more descriptive filename if pdf_count > 0 and img_count > 0: zip_filename = f"historical_ocr_mixed_{pdf_count}pdf_{img_count}img_{timestamp}.zip" elif pdf_count > 0: zip_filename = f"historical_ocr_pdf_documents_{pdf_count}_{timestamp}.zip" elif img_count > 0: zip_filename = f"historical_ocr_images_{img_count}_{timestamp}.zip" else: zip_filename = f"historical_ocr_results_{timestamp}.zip" st.download_button( label="Download All Results", data=zip_data, file_name=zip_filename, mime="application/zip", help="Download all previous results as a ZIP file containing HTML and JSON files" ) except Exception as e: st.error(f"Error creating download: {str(e)}") st.info("Try with fewer results or individual downloads") # Filter results based on selection filtered_results = st.session_state.previous_results if selected_filter == "PDF Documents": filtered_results = [r for r in st.session_state.previous_results if r.get("file_name", "").lower().endswith(".pdf")] elif selected_filter == "Images": filtered_results = [r for r in st.session_state.previous_results if r.get("file_name", "").lower().endswith((".jpg", ".jpeg", ".png"))] # Show a message if no results match the filter if not filtered_results: st.markdown("""

No results match the selected filter.

""", unsafe_allow_html=True) # Display each result as a card for i, result in enumerate(filtered_results): # Determine file type icon file_name = result.get("file_name", f"Document {i+1}") file_type_lower = file_name.lower() if file_type_lower.endswith(".pdf"): icon = "📄" elif file_type_lower.endswith((".jpg", ".jpeg", ".png", ".gif")): icon = "🖼️" else: icon = "📝" # Create a card for each result st.markdown(f"""
{icon} {result.get('descriptive_file_name', file_name)}
{result.get('timestamp', 'Unknown')}
""", unsafe_allow_html=True) # Add view button inside the card with proper styling st.markdown('
', unsafe_allow_html=True) if st.button(f"View Document", key=f"view_{i}"): # Set the selected result in the session state st.session_state.selected_previous_result = st.session_state.previous_results[i] # Force a rerun to show the selected result st.rerun() st.markdown('
', unsafe_allow_html=True) # Close the result card st.markdown('
', unsafe_allow_html=True) # Close the container st.markdown('
', unsafe_allow_html=True) # Display the selected result if available if 'selected_previous_result' in st.session_state and st.session_state.selected_previous_result: selected_result = st.session_state.selected_previous_result # Create a styled container for the selected result st.markdown(f"""
Selected Document: {selected_result.get('file_name', 'Unknown')}
{selected_result.get('timestamp', '')}
""", unsafe_allow_html=True) # Display metadata in a styled way meta_col1, meta_col2 = st.columns(2) with meta_col1: # Display document metadata if 'languages' in selected_result: languages = [lang for lang in selected_result['languages'] if lang is not None] if languages: st.write(f"**Languages:** {', '.join(languages)}") if 'topics' in selected_result and selected_result['topics']: # Show topics in a more organized way with badges st.markdown("**Subject Tags:**") # Create a container with flex display for the tags st.markdown('
', unsafe_allow_html=True) # Generate a badge for each tag for topic in selected_result['topics']: # Create colored badge based on tag category badge_color = "#546e7a" # Default color # Assign colors by category if any(term in topic.lower() for term in ["century", "pre-", "era", "historical"]): badge_color = "#1565c0" # Blue for time periods elif any(term in topic.lower() for term in ["language", "english", "french", "german", "latin"]): badge_color = "#00695c" # Teal for languages elif any(term in topic.lower() for term in ["letter", "newspaper", "book", "form", "document", "recipe"]): badge_color = "#6a1b9a" # Purple for document types elif any(term in topic.lower() for term in ["travel", "military", "science", "medicine", "education", "art", "literature"]): badge_color = "#2e7d32" # Green for subject domains elif any(term in topic.lower() for term in ["preprocessed", "enhanced", "grayscale", "denoised", "contrast", "rotated"]): badge_color = "#e65100" # Orange for preprocessing-related tags st.markdown( f'{topic}', unsafe_allow_html=True ) # Close the container st.markdown('
', unsafe_allow_html=True) with meta_col2: # Display processing metadata if 'limited_pages' in selected_result: st.info(f"Processed {selected_result['limited_pages']['processed']} of {selected_result['limited_pages']['total']} pages") if 'processing_time' in selected_result: proc_time = selected_result['processing_time'] st.write(f"**Processing Time:** {proc_time:.1f}s") # Create tabs for content display has_images = selected_result.get('has_images', False) if has_images: view_tab1, view_tab2, view_tab3 = st.tabs(["Structured View", "Raw Text", "With Images"]) else: view_tab1, view_tab2 = st.tabs(["Structured View", "Raw Text"]) with view_tab1: # Display structured content if 'ocr_contents' in selected_result and isinstance(selected_result['ocr_contents'], dict): for section, content in selected_result['ocr_contents'].items(): if content and section not in ['error', 'raw_text', 'partial_text']: # Skip error and raw text sections st.markdown(f"#### {section.replace('_', ' ').title()}") if isinstance(content, str): st.write(content) elif isinstance(content, list): for item in content: if isinstance(item, str): st.write(f"- {item}") else: st.write(f"- {str(item)}") elif isinstance(content, dict): for k, v in content.items(): st.write(f"**{k}:** {v}") with view_tab2: # Display raw text with editing capability raw_text = "" if 'ocr_contents' in selected_result: if 'raw_text' in selected_result['ocr_contents']: raw_text = selected_result['ocr_contents']['raw_text'] elif 'content' in selected_result['ocr_contents']: raw_text = selected_result['ocr_contents']['content'] # Allow editing of the raw text edited_text = st.text_area("Edit Raw Text", raw_text, height=400, key="selected_raw_text") # Add a button to copy the edited text to clipboard if st.button("Copy to Clipboard", key="selected_copy_btn"): st.success("Text copied to clipboard! (You can paste it elsewhere)") # Add a download button for the edited text st.download_button( label="Download Edited Text", data=edited_text, file_name=f"{selected_result.get('file_name', 'document').split('.')[0]}_edited.txt", mime="text/plain", key="selected_download_btn" ) if has_images and 'pages_data' in selected_result: with view_tab3: # Use the display_document_with_images function display_document_with_images(selected_result) # Close the container st.markdown('
', unsafe_allow_html=True) # Add a button to close the selected result if st.button("Close Selected Document", key="close_selected"): # Clear the selected result from session state del st.session_state.selected_previous_result # Force a rerun to update the view st.rerun() def display_about_tab(): """Display about tab content""" st.markdown('

About Historical OCR

', unsafe_allow_html=True) # Add app description st.markdown(""" **Historical OCR** is a specialized tool for extracting text from historical documents, manuscripts, and printed materials. ### Purpose This tool is designed to assist scholars in historical research by extracting text from challenging documents. While it may not achieve 100% accuracy for all materials, it serves as a valuable research aid for navigating historical documents, particularly: - **Historical newspapers** with complex layouts and aged text - **Handwritten documents** from various time periods - **Photos of archival materials** that may be difficult to read ### Features - **Advanced Image Preprocessing**: Optimize historical documents for better OCR results - **Custom Document Type Processing**: Specialized handling for newspapers, letters, books, and more - **Editable Results**: Review and edit extracted text directly in the interface - **Structured Content Analysis**: Automatic organization of document content - **Multi-language Support**: Process documents in various languages - **PDF Processing**: Handle multi-page historical documents ### How to Use 1. Upload a document (PDF or image) 2. Select the document type and adjust preprocessing options if needed 3. Add custom processing instructions for specialized documents 4. Process the document 5. Review, edit, and download the results ### Technologies - OCR processing using Mistral AI's advanced document understanding capabilities - Image preprocessing with OpenCV - PDF handling with pdf2image - Web interface with Streamlit """) # Add version information st.markdown("**Version:** 1.0.0")