# config.py """ Configuration file for Mistral OCR processing. Contains API key and other settings. """ import os import logging from dotenv import load_dotenv # Configure logging logger = logging.getLogger("config") # Load environment variables from .env file if it exists load_dotenv() # Mistral API key handling - prioritizing Hugging Face environment # Priority order: # 1. HF_API_KEY environment variable (Hugging Face standard) # 2. HUGGING_FACE_API_KEY environment variable (alternative name) # 3. HF_MISTRAL_API_KEY environment variable (for Hugging Face deployment) # 4. MISTRAL_API_KEY environment variable (fallback) # 5. Empty string (will show warning in app) MISTRAL_API_KEY = os.environ.get("HF_API_KEY", os.environ.get("HUGGING_FACE_API_KEY", os.environ.get("HF_MISTRAL_API_KEY", os.environ.get("MISTRAL_API_KEY", "")))).strip() if not MISTRAL_API_KEY: logger.warning("No Mistral API key found in environment variables. API functionality will be limited.") # Check if we're in test mode (allows operation without valid API key) # Set to False to use actual API calls with Mistral API TEST_MODE = False # Model settings with fallbacks OCR_MODEL = os.environ.get("MISTRAL_OCR_MODEL", "mistral-ocr-latest") TEXT_MODEL = os.environ.get("MISTRAL_TEXT_MODEL", "mistral-small-latest") # Updated from ministral-8b-latest VISION_MODEL = os.environ.get("MISTRAL_VISION_MODEL", "mistral-small-latest") # faster model that supports vision # Image preprocessing settings optimized for historical documents # These can be customized from environment variables IMAGE_PREPROCESSING = { "enhance_contrast": float(os.environ.get("ENHANCE_CONTRAST", "3.5")), # Increased contrast for better text recognition "sharpen": os.environ.get("SHARPEN", "True").lower() in ("true", "1", "yes"), "denoise": os.environ.get("DENOISE", "True").lower() in ("true", "1", "yes"), "max_size_mb": float(os.environ.get("MAX_IMAGE_SIZE_MB", "200.0")), # Increased size limit for better quality "target_dpi": int(os.environ.get("TARGET_DPI", "300")), # Target DPI for scaling "compression_quality": int(os.environ.get("COMPRESSION_QUALITY", "100")), # Higher quality for better OCR results # # Enhanced settings for handwritten documents "handwritten": { "block_size": int(os.environ.get("HANDWRITTEN_BLOCK_SIZE", "21")), # Larger block size for adaptive thresholding "constant": int(os.environ.get("HANDWRITTEN_CONSTANT", "5")), # Lower constant for adaptive thresholding "use_dilation": os.environ.get("HANDWRITTEN_DILATION", "True").lower() in ("true", "1", "yes"), # Connect broken strokes "dilation_iterations": int(os.environ.get("HANDWRITTEN_DILATION_ITERATIONS", "2")), # More iterations for better stroke connection "dilation_kernel_size": int(os.environ.get("HANDWRITTEN_DILATION_KERNEL_SIZE", "3")) # Larger kernel for dilation } } # OCR settings optimized for single-page performance OCR_SETTINGS = { "timeout_ms": int(os.environ.get("OCR_TIMEOUT_MS", "45000")), # Shorter timeout for single pages (45 seconds) "max_retries": int(os.environ.get("OCR_MAX_RETRIES", "2")), # Fewer retries to avoid rate-limiting "retry_delay": int(os.environ.get("OCR_RETRY_DELAY", "1")), # Shorter initial retry delay for faster execution "include_image_base64": os.environ.get("INCLUDE_IMAGE_BASE64", "True").lower() in ("true", "1", "yes"), "thread_count": int(os.environ.get("OCR_THREAD_COUNT", "2")) # Lower thread count to prevent API rate limiting }