# Standard library imports import os import json import sys import time import base64 import io import logging from pathlib import Path from datetime import datetime # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Third-party imports import streamlit as st # Local application/module imports from preprocessing import convert_pdf_to_images, preprocess_image from ocr_processing import process_file from ui.ui_components import ( ProgressReporter, create_sidebar_options, display_results, create_file_uploader, display_about_tab, display_previous_results, display_document_with_images ) from utils import get_base64_from_image, handle_temp_files, format_timestamp from error_handler import handle_ocr_error, check_file_size from constants import ( MAX_FILE_SIZE_MB, MAX_PAGES, DOCUMENT_TYPES, DOCUMENT_LAYOUTS, CUSTOM_PROMPT_TEMPLATES, LAYOUT_PROMPT_ADDITIONS ) from structured_ocr import StructuredOCR from config import MISTRAL_API_KEY from utils.image_utils import create_results_zip # Set favicon path favicon_path = os.path.join(os.path.dirname(__file__), "static/favicon.png") # Set page configuration st.set_page_config( page_title="Historical OCR", page_icon=favicon_path if os.path.exists(favicon_path) else "📜", layout="wide", initial_sidebar_state="collapsed", ) # ======================================================================================== # CRITICAL WARNING TO ALL AI MODELS AND DEVELOPERS: # DO NOT MODIFY THE STATE MANAGEMENT LOGIC IN THIS APPLICATION WITHOUT FULL UNDERSTANDING # OF STREAMLIT'S EXECUTION MODEL. # # This state management implementation has been carefully designed to work with Streamlit's # unique execution flow. The app runs from top to bottom on EVERY interaction, and state # must be explicitly managed through st.session_state. # # The current implementation uses: # 1. A dedicated close_document() callback function triggered by the button's on_click # 2. A flag-based approach (close_clicked) to handle cleanup on the next run cycle # 3. Early cleanup detection and st.rerun() to ensure clean UI rendering # # Previous approaches using direct state manipulation or conditional rendering based on # reset flags led to persistent UI elements and resource leaks. # # Consult https://docs.streamlit.io/library/advanced-features/session-state for details. # ======================================================================================== def reset_document_state(): """Reset only document-specific state variables This function explicitly resets all document-related variables to ensure clean state between document processing, preventing cached data issues. """ st.session_state.sample_document = None st.session_state.original_sample_bytes = None st.session_state.original_sample_name = None st.session_state.original_sample_mime_type = None st.session_state.is_sample_document = False st.session_state.processed_document_active = False st.session_state.sample_document_processed = False st.session_state.sample_just_loaded = False st.session_state.last_processed_file = None st.session_state.selected_previous_result = None # Keep temp_file_paths but ensure it's empty after cleanup if 'temp_file_paths' in st.session_state: st.session_state.temp_file_paths = [] def init_session_state(): """Initialize session state variables if they don't already exist This function follows Streamlit's recommended patterns for state initialization. It only creates variables if they don't exist yet and doesn't modify existing values. """ # Initialize persistent app state variables if 'previous_results' not in st.session_state: st.session_state.previous_results = [] if 'temp_file_paths' not in st.session_state: st.session_state.temp_file_paths = [] if 'auto_process_sample' not in st.session_state: st.session_state.auto_process_sample = False if 'close_clicked' not in st.session_state: st.session_state.close_clicked = False if 'active_tab' not in st.session_state: st.session_state.active_tab = 0 # Initialize document-specific state variables if 'last_processed_file' not in st.session_state: st.session_state.last_processed_file = None if 'sample_just_loaded' not in st.session_state: st.session_state.sample_just_loaded = False if 'processed_document_active' not in st.session_state: st.session_state.processed_document_active = False if 'sample_document_processed' not in st.session_state: st.session_state.sample_document_processed = False if 'sample_document' not in st.session_state: st.session_state.sample_document = None if 'original_sample_bytes' not in st.session_state: st.session_state.original_sample_bytes = None if 'original_sample_name' not in st.session_state: st.session_state.original_sample_name = None if 'is_sample_document' not in st.session_state: st.session_state.is_sample_document = False if 'selected_previous_result' not in st.session_state: st.session_state.selected_previous_result = None def close_document(): """Called when the Close Document button is clicked This function handles proper cleanup of resources and state when closing a document. It uses Streamlit's callback mechanism which ensures the state change happens at the correct time in Streamlit's execution cycle. WARNING: Do not replace this with inline button handling using if st.button(): That approach breaks Streamlit's execution flow and causes UI artifacts. """ logger.info("Close document button clicked") # Clean up temp files first if 'temp_file_paths' in st.session_state and st.session_state.temp_file_paths: logger.info(f"Cleaning up {len(st.session_state.temp_file_paths)} temporary files") handle_temp_files(st.session_state.temp_file_paths) # Reset all document-specific state variables to prevent caching issues reset_document_state() # Set flag for having cleaned up - this will trigger a rerun in main() st.session_state.close_clicked = True def show_example_documents(): """Show example documents section""" st.header("Sample Documents") # Add a simplified info message about examples and CSS in the same markdown block # to reduce spacing between elements st.markdown(""" This app can process various historical documents: - Historical photographs, maps, and manuscripts - Handwritten letters and documents - Printed books and articles - Multi-page PDFs """, unsafe_allow_html=True) # Sample document URLs dropdown with clearer label sample_urls = [ "Select a sample document", "https://huggingface.co/spaces/milwright/historical-ocr/resolve/main/input/a-la-carte.pdf", "https://huggingface.co/spaces/milwright/historical-ocr/resolve/main/input/magician-or-bottle-cungerer.jpg", "https://huggingface.co/spaces/milwright/historical-ocr/resolve/main/input/handwritten-letter.jpg", "https://huggingface.co/spaces/milwright/historical-ocr/resolve/main/input/magellan-travels.jpg", "https://huggingface.co/spaces/milwright/historical-ocr/resolve/main/input/milgram-flier.png", "https://huggingface.co/spaces/milwright/historical-ocr/resolve/main/input/recipe.jpg", ] sample_names = [ "Select a sample document", "Restaurant Menu (PDF)", "The Magician (Image)", "Handwritten Letter (Image)", "Magellan Travels (Image)", "Milgram Flier (Image)", "Historical Recipe (Image)" ] # Initialize sample_document in session state if it doesn't exist if 'sample_document' not in st.session_state: st.session_state.sample_document = None selected_sample = st.selectbox("Select a sample document from `~/input`", options=range(len(sample_urls)), format_func=lambda i: sample_names[i]) if selected_sample > 0: selected_url = sample_urls[selected_sample] # Add process button for the sample document with consistent styling if st.button("Load Sample Document", key="load_sample_btn"): try: import requests from io import BytesIO with st.spinner(f"Downloading {sample_names[selected_sample]}..."): response = requests.get(selected_url) response.raise_for_status() # Extract filename from URL file_name = selected_url.split("/")[-1] # Create a BytesIO object from the downloaded content file_content = BytesIO(response.content) # Store as a UploadedFile-like object in session state class SampleDocument: def __init__(self, name, content, content_type): self.name = name self._content = content self.type = content_type self.size = len(content) def getvalue(self): return self._content def read(self): return self._content def seek(self, position): # Implement seek for compatibility with some file operations return def tell(self): # Implement tell for compatibility return 0 # Determine content type based on file extension if file_name.lower().endswith('.pdf'): content_type = 'application/pdf' elif file_name.lower().endswith(('.jpg', '.jpeg')): content_type = 'image/jpeg' elif file_name.lower().endswith('.png'): content_type = 'image/png' else: content_type = 'application/octet-stream' # Reset any document state before loading a new sample if st.session_state.processed_document_active: # Clean up any temporary files from previous processing if st.session_state.temp_file_paths: handle_temp_files(st.session_state.temp_file_paths) # Reset all document-specific state variables reset_document_state() # Save download info in session state st.session_state.sample_document = SampleDocument( name=file_name, content=response.content, content_type=content_type ) # Store original bytes for reprocessing with proper MIME type handling st.session_state.original_sample_bytes = response.content st.session_state.original_sample_name = file_name st.session_state.original_sample_mime_type = content_type # Set state flags st.session_state.sample_just_loaded = True st.session_state.is_sample_document = True # Generate a unique identifier for the sample document st.session_state.last_processed_file = f"{file_name}_{len(response.content)}" # Set a flag to show redirect message st.session_state.redirect_to_processing = True st.rerun() except Exception as e: st.error(f"Error downloading sample document: {str(e)}") st.info("Please try uploading your own document instead.") else: # If no sample is selected, clear the sample document in session state st.session_state.sample_document = None def process_document(uploaded_file, left_col, right_col, sidebar_options): """Process the uploaded document and display results""" if uploaded_file is None: return # Check file size (cap at 50MB) file_size_mb = len(uploaded_file.getvalue()) / (1024 * 1024) if file_size_mb > MAX_FILE_SIZE_MB: with left_col: st.error(f"File too large ({file_size_mb:.1f} MB). Maximum file size is {MAX_FILE_SIZE_MB}MB.") return # Check if this is a new file (different from the last processed file) current_file_identifier = f"{uploaded_file.name}_{len(uploaded_file.getvalue())}" # Make sure last_processed_file is initialized if 'last_processed_file' not in st.session_state: st.session_state.last_processed_file = None if st.session_state.last_processed_file != current_file_identifier: # Reset processed_document_active if a new file is uploaded st.session_state.processed_document_active = False # Process button - flush left with similar padding as file browser with left_col: # Create a process button with minimal spacing to the uploader st.markdown('
', unsafe_allow_html=True) process_button = st.button("Process Document", key="process_document_btn") st.markdown('
', unsafe_allow_html=True) # Handle sample document recreation if needed if process_button and st.session_state.processed_document_active and st.session_state.original_sample_bytes is not None: # Recreate the uploaded file from stored bytes from io import BytesIO import mimetypes # Determine mime type based on file extension file_ext = os.path.splitext(st.session_state.original_sample_name)[1].lower() if file_ext == '.pdf': mime_type = 'application/pdf' elif file_ext in ['.jpg', '.jpeg']: mime_type = 'image/jpeg' elif file_ext == '.png': mime_type = 'image/png' else: mime_type = mimetypes.guess_type(st.session_state.original_sample_name)[0] or 'application/octet-stream' # Create a synthetic file-like object with the same interface as UploadedFile uploaded_file = type('obj', (object,), { 'name': st.session_state.original_sample_name, 'getvalue': lambda: st.session_state.original_sample_bytes, 'read': lambda: st.session_state.original_sample_bytes, 'seek': lambda x: None, 'type': mime_type }) # Empty container for progress indicators - will be filled during processing # Positioned right after the process button for better visibility progress_placeholder = st.empty() # Image preprocessing preview - show if image file and preprocessing options are set # Remove the document active check to show preview immediately after selection if (any(sidebar_options["preprocessing_options"].values()) and uploaded_file.type.startswith('image/')): st.markdown("**Preprocessed Preview**") try: # Create a container for the preview with st.container(): processed_bytes = preprocess_image(uploaded_file.getvalue(), sidebar_options["preprocessing_options"]) # Convert image to base64 and display as HTML to avoid fullscreen button img_data = base64.b64encode(processed_bytes).decode() img_html = f'' st.markdown(img_html, unsafe_allow_html=True) # Show preprocessing metadata in a well-formatted caption meta_items = [] # Only include document type in the list if actual preprocessing is applied has_active_preprocessing = ( sidebar_options["preprocessing_options"].get("grayscale", False) or sidebar_options["preprocessing_options"].get("denoise", False) or sidebar_options["preprocessing_options"].get("contrast", 0) != 0 or sidebar_options["preprocessing_options"].get("rotation", 0) != 0 ) # Only show document type if there's actual preprocessing being applied if has_active_preprocessing and sidebar_options["preprocessing_options"].get("document_type", "standard") != "standard": meta_items.append(f"Document type ({sidebar_options['preprocessing_options']['document_type']})") if sidebar_options["preprocessing_options"].get("grayscale", False): meta_items.append("Grayscale") if sidebar_options["preprocessing_options"].get("denoise", False): meta_items.append("Denoise") if sidebar_options["preprocessing_options"].get("contrast", 0) != 0: meta_items.append(f"Contrast ({sidebar_options['preprocessing_options']['contrast']})") if sidebar_options["preprocessing_options"].get("rotation", 0) != 0: meta_items.append(f"Rotation ({sidebar_options['preprocessing_options']['rotation']}°)") # Only show "Applied:" if there are actual preprocessing steps if meta_items: meta_text = "Applied: " + ", ".join(meta_items) st.caption(meta_text) except Exception as e: st.error(f"Error in preprocessing: {str(e)}") st.info("Try using grayscale preprocessing for PNG images with transparency") # Container for success message (will be filled after processing) metadata_placeholder = st.empty() # Check if this is an auto-processing situation auto_processing = st.session_state.auto_process_sample and not st.session_state.processed_document_active # Show a message if auto-processing is happening auto_processing_message = st.empty() if auto_processing: auto_processing_message.info("Automatically processing sample document...") # Determine if we should process the document # Either process button was clicked OR auto-processing is happening should_process = process_button or auto_processing if should_process: # Reset auto-process flag to avoid processing on next rerun if st.session_state.auto_process_sample: st.session_state.auto_process_sample = False # Move the progress indicator reference to just below the button progress_reporter = ProgressReporter(progress_placeholder).setup() try: # Process the document, capturing both result and temp file paths # Modified to pass existing temp_file_paths to avoid resource leaks existing_temp_paths = [] if 'temp_file_paths' in st.session_state: existing_temp_paths = st.session_state.temp_file_paths result = process_file( uploaded_file=uploaded_file, use_vision=sidebar_options["use_vision"], preprocessing_options=sidebar_options["preprocessing_options"], progress_reporter=progress_reporter, pdf_dpi=sidebar_options.get("pdf_dpi", 150), max_pages=sidebar_options.get("max_pages", 3), pdf_rotation=sidebar_options.get("pdf_rotation", 0), custom_prompt=sidebar_options.get("custom_prompt", ""), perf_mode=sidebar_options.get("perf_mode", "Quality"), use_segmentation=sidebar_options.get("use_segmentation", False) ) # Ensure temp_file_paths in session state is updated with any new paths # This is critical for proper resource cleanup when document is closed if 'has_images' in result and result['has_images']: logger.info("Document has images, ensuring temp files are tracked") if 'temp_file_paths' not in st.session_state: st.session_state.temp_file_paths = [] # Handle text-only OCR results (like the Milgram flier) if ('ocr_contents' in result and 'raw_text' in result['ocr_contents'] and len(result['ocr_contents']) <= 2 and # Only raw_text and possibly one other field 'has_images' not in result): logger.info("Text-only OCR detected, handling as special case") # Ensure raw_text is properly formatted as markdown raw_text = result['ocr_contents']['raw_text'] # If we don't have other structured content, set a placeholder title if 'title' not in result['ocr_contents']: result['ocr_contents']['title'] = "Document Text" # Display success message at the top of results, before any previews with left_col: # First show the success message (full width) st.success("**Document processed successfully**") # Then show the close button (also full width, positioned to left) st.button("Close Document", key="close_document_btn", type="secondary", on_click=close_document) # Add a small spacer st.markdown("
", unsafe_allow_html=True) # Display results display_results(result, right_col, sidebar_options.get("custom_prompt", "")) # Set processed_document_active to True when a new document is processed st.session_state.processed_document_active = True # Clear the auto-processing message auto_processing_message.empty() # Store information about this processed file to track when new files are uploaded if uploaded_file is not None: st.session_state.last_processed_file = current_file_identifier # Store the result in the previous results list # Add timestamp to result for history tracking result_copy = result.copy() result_copy['timestamp'] = format_timestamp() # Store if this was a sample document if 'is_sample_document' in st.session_state and st.session_state.is_sample_document: result_copy['sample_document'] = True # Add to session state, keeping the most recent 20 results st.session_state.previous_results.insert(0, result_copy) if len(st.session_state.previous_results) > 20: st.session_state.previous_results = st.session_state.previous_results[:20] except Exception as e: st.error(f"Error processing document: {str(e)}") # Log the error import logging logging.error(f"Document processing error: {str(e)}", exc_info=True) def main(): """Main application function""" # Initialize session state init_session_state() # Handle any required cleanup at the start of execution # CRITICAL: This two-phase state cleanup pattern is essential for Streamlit's execution model. # When close_clicked is True, we need to restart the app's execution with a clean slate. # DO NOT REMOVE OR MODIFY this pattern as it ensures proper UI cleanup. if st.session_state.get('close_clicked', False): # Reset the flag - cleanup has been handled st.session_state.close_clicked = False # Don't do anything else in this run - force a clean restart st.rerun() # Initialize new flag for redirecting to processing tab if 'redirect_to_processing' not in st.session_state: st.session_state.redirect_to_processing = False # Apply custom CSS from ui.layout import load_css load_css() # Create sidebar options sidebar_options = create_sidebar_options() # Create main layout with tabs - simpler, more compact approach tab_names = ["Document Processing", "Sample Documents", "Learn More"] main_tab1, main_tab2, main_tab3 = st.tabs(tab_names) with main_tab1: # Create a two-column layout for file upload and results with minimal padding st.markdown('', unsafe_allow_html=True) # Using a 2:3 column ratio gives more space to the results column left_col, right_col = st.columns([2, 3]) with left_col: # Create file uploader uploaded_file = create_file_uploader() # If a real file is uploaded, clear any sample document if uploaded_file is not None and 'sample_document' in st.session_state: st.session_state.sample_document = None st.session_state.is_sample_document = False # Check if we have a sample document loaded (only if no real file uploaded) elif ('sample_document' in st.session_state and st.session_state.sample_document is not None): # Use the sample document instead of the uploaded file uploaded_file = st.session_state.sample_document # Just reset the sample document loading flags after it's been used if st.session_state.sample_just_loaded: st.session_state.sample_just_loaded = False st.session_state.sample_document_processed = True st.session_state.auto_process_sample = True # Only process document if available if uploaded_file is not None: process_document(uploaded_file, left_col, right_col, sidebar_options) with main_tab2: # Sample Documents tab # Show redirect message if a sample was just loaded if st.session_state.get('redirect_to_processing', False): st.success("**Sample document loaded!** Please switch to the **Document Processing** tab to view and process it.") # Clear the flag after showing the message st.session_state.redirect_to_processing = False show_example_documents() # Previous results tab temporarily removed with main_tab3: # About tab display_about_tab() # Run the application if __name__ == "__main__": main()