File size: 4,173 Bytes
743534b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python
# coding: utf-8

# ## 1. tsv full data load
import pandas as pd

df = pd.read_csv("sl_webtoon_full_data_sequential.tsv", sep="\t")

print(df.head())
print("์ „์ฒด ๋ฌธ์žฅ ์ˆ˜:", len(df))
print("์ปฌ๋Ÿผ ๋ชฉ๋ก:", df.columns.tolist())

df['row_id'] = df.index  # ์ธ๋ฑ์Šค ์ปฌ๋Ÿผ ์ถ”๊ฐ€
df['text'] = df.apply(
    lambda x: f"[{x['์—ํ”ผ์†Œ๋“œ']}] #{x['row_id']} {x['type']} {x['scene_text']}",
    axis=1
)
texts = df['text'].tolist()
print("์ตœ์ข… ๋ฌธ์žฅ ์ˆ˜:", len(texts))

# ## 2. RAG ๋ฌธ์žฅ ์ƒ์„ฑ
print("์˜ˆ์‹œ 5๊ฐœ:")
for t in df['text'].head(5).tolist():
    print("-", t)

# ## 3. ํ•œ๊ตญ์–ด ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋“œ, ๋ฒกํ„ฐ db
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings

embedding_model = HuggingFaceEmbeddings(model_name='jhgan/ko-sroberta-multitask')

db = FAISS.from_texts(texts, embedding_model)
print(" ๋ฒกํ„ฐDB ์ƒ์„ฑ ์™„๋ฃŒ. ์ด ๋ฌธ์žฅ ์ˆ˜:", len(texts))
db.save_local("solo_leveling_faiss_ko")

db = FAISS.load_local("solo_leveling_faiss_ko", embedding_model, allow_dangerous_deserialization=True)

# ๊ฒ€์ƒ‰ ํ…Œ์ŠคํŠธ
query = "๋งˆ๋‚˜์„์ด ๋ญ์ง€?"
docs = db.similarity_search(query, k=5)
for i, doc in enumerate(docs, 1):
    print(f"[{i}] {doc.page_content}")

# ## 4. LLM ๋กœ๋“œ (CPU ์ „์šฉ)
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFacePipeline
import torch

# CPU๋กœ ๊ฐ•์ œ
generator = pipeline(
    "text-generation",
    model="kakaocorp/kanana-nano-2.1b-instruct",
    device=-1   # โœ… CPU ์‚ฌ์šฉ
)

embedding_model = HuggingFaceEmbeddings(model_name='jhgan/ko-sroberta-multitask')
vectorstore = FAISS.load_local("solo_leveling_faiss_ko", embedding_model, allow_dangerous_deserialization=True)

model_name = "kakaocorp/kanana-nano-2.1b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float32   # โœ… CPU์—์„œ๋Š” float32
).to("cpu")                      # โœ… CPU ์‚ฌ์šฉ

llm_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=128)
llm = HuggingFacePipeline(pipeline=llm_pipeline)

custom_prompt = PromptTemplate(
    input_variables=["context", "question"],
    template="๋‹ค์Œ ๋ฌธ๋งฅ์„ ์ฐธ๊ณ ํ•˜์—ฌ ์งˆ๋ฌธ์— ๋‹ตํ•˜์„ธ์š”.\n\n๋ฌธ๋งฅ:\n{context}\n\n์งˆ๋ฌธ:\n{question}\n\n๋‹ต๋ณ€:"
)

qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=vectorstore.as_retriever(search_kwargs={"k": 5}),
    chain_type="stuff",
    return_source_documents=True,
    chain_type_kwargs={"prompt": custom_prompt}
)

# ์งˆ๋ฌธ ํ…Œ์ŠคํŠธ
query = "์„ฑ์ง„์šฐ๋Š” ๋ช‡ ๊ธ‰ ํ—Œํ„ฐ์ง€?"
result = qa_chain({"query": query})
print("๋‹ต๋ณ€:", result["result"])
print("\n์ฐธ์กฐ ๋ฌธ์„œ:")
for doc in result["source_documents"]:
    print(doc.page_content)

# ## 5. ํ™ฉ๋™์„ ์—ํ”ผ์†Œ๋“œ
choices = [
    "1: ํ™ฉ๋™์„ ๋ฌด๋ฆฌ๋ฅผ ๋ชจ๋‘ ์ฒ˜์น˜ํ•œ๋‹ค.",
    "2: ์ง„ํ˜ธ๋ฅผ ํฌํ•จํ•œ ํ™ฉ๋™์„ ๋ฌด๋ฆฌ๋ฅผ ๋ชจ๋‘ ์ฒ˜์น˜ํ•œ๋‹ค.",
    "3: ์ „๋ถ€ ๊ธฐ์ ˆ ์‹œํ‚ค๊ณ  ์‚ด๋ ค๋‘”๋‹ค.",
    "4: ์‹œ์Šคํ…œ์„ ๊ฑฐ๋ถ€ํ•˜๊ณ  ๊ทธ๋ƒฅ ๋„๋ง์นœ๋‹ค."
]

print("\n[์„ ํƒ์ง€]")
for idx, choice in enumerate(choices, start=1):
    print(f"{idx}. {choice}")

user_idx = int(input("\n์„ ํƒ ๋ฒˆํ˜ธ ์ž…๋ ฅ: ")) - 1
user_choice = choices[user_idx]
print(f"\n[์‚ฌ์šฉ์ž ์„ ํƒ]: {user_choice}")

result = qa_chain({"query": user_choice})
retrieved_context = "\n".join([doc.page_content for doc in result["source_documents"]])

print("\n[๊ฒ€์ƒ‰๋œ ๊ทผ๊ฑฐ ๋ฌธ์„œ ์˜ˆ์‹œ]")
print(retrieved_context[:600], "...") 

prompt = f"""
๋‹น์‹ ์€ ์›นํˆฐ '๋‚˜ ํ˜ผ์ž๋งŒ ๋ ˆ๋ฒจ์—…'์˜ ์„ฑ์ง„์šฐ์ž…๋‹ˆ๋‹ค.
ํ˜„์žฌ ์ƒํ™ฉ:
{retrieved_context}
์‚ฌ์šฉ์ž ์„ ํƒ: {user_choice}
์„ฑ์ง„์šฐ์˜ ๋งํˆฌ๋กœ ๊ฐ„๊ฒฐํ•˜๊ณ  ์ž์—ฐ์Šค๋Ÿฌ์šด ๋Œ€์‚ฌ๋ฅผ 1~2๋ฌธ์žฅ ์ƒ์„ฑํ•˜์„ธ์š”.
์ค‘๋ณต๋œ ๋‚ด์šฉ์ด๋‚˜ ๋น„์Šทํ•œ ๋ฌธ์žฅ์€ ๋งŒ๋“ค์ง€ ๋งˆ์„ธ์š”.
"""

response = generator(
    prompt, 
    max_new_tokens=200, 
    do_sample=True, 
    temperature=0.6,
    top_p=0.9,
    return_full_text=False
)[0]["generated_text"]

print("\n[์„ฑ์ง„์šฐ ์‘๋‹ต]")
print(response)