Spaces:
Runtime error
Runtime error
Rename app.txt to app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision.transforms._transforms_video import (CenterCropVideo,NormalizeVideo)
|
4 |
+
from torchvision.transforms import (Compose,Lambda,RandomCrop,RandomHorizontalFlip,Resize)
|
5 |
+
from pytorchvideo.transforms import (ApplyTransformToKey,Normalize,RandomShortSideScale,UniformTemporalSubsample,Permute)
|
6 |
+
import numpy as np
|
7 |
+
import gradio as gr
|
8 |
+
import spaces
|
9 |
+
# torch.save(model.state_dict(), 'model.pth')
|
10 |
+
video_transform = Compose([
|
11 |
+
ApplyTransformToKey(key = 'video',
|
12 |
+
transform = Compose([
|
13 |
+
UniformTemporalSubsample(20),
|
14 |
+
Lambda(lambda x:x/255),
|
15 |
+
Normalize((0.45,0.45,0.45),(0.225,0.225,0.225)),
|
16 |
+
RandomShortSideScale(min_size = 248, max_size = 256),
|
17 |
+
CenterCropVideo(224),
|
18 |
+
RandomHorizontalFlip(p=0.5),
|
19 |
+
]),
|
20 |
+
),
|
21 |
+
])
|
22 |
+
#============================================================
|
23 |
+
class mymodel_test(nn.Module):
|
24 |
+
def __init__(self):
|
25 |
+
super(mymodel_test,self).__init__()
|
26 |
+
self.video_model = torch.hub.load('facebookresearch/pytorchvideo','efficient_x3d_xs', pretrained=False)
|
27 |
+
self.relu = nn.ReLU()
|
28 |
+
|
29 |
+
self.Linear = nn.Linear(400,1)
|
30 |
+
|
31 |
+
def forward(self,x):
|
32 |
+
|
33 |
+
x = self.relu(self.video_model(x))
|
34 |
+
x = self.Linear(x)
|
35 |
+
return x
|
36 |
+
|
37 |
+
|
38 |
+
#============================================================
|
39 |
+
|
40 |
+
model_test = mymodel_test()
|
41 |
+
model_test.load_state_dict(torch.load('model.pth'))
|
42 |
+
from pytorchvideo.data.encoded_video import EncodedVideo
|
43 |
+
@spaces.GPU
|
44 |
+
def interface_video(video_path):
|
45 |
+
video = EncodedVideo.from_path(video_path)
|
46 |
+
|
47 |
+
video_data = video.get_clip(0,2)
|
48 |
+
|
49 |
+
video_data = video_transform(video_data)
|
50 |
+
|
51 |
+
video_data['video'].shape
|
52 |
+
model = model_test
|
53 |
+
|
54 |
+
inputs = video_data['video']
|
55 |
+
|
56 |
+
inputs = torch.unsqueeze(inputs, 0 )
|
57 |
+
inputs.shape
|
58 |
+
preds = model(inputs)
|
59 |
+
|
60 |
+
preds = preds.detach().cpu().numpy()
|
61 |
+
preds = np.where(preds>0.5,1,0)
|
62 |
+
if(preds==0):
|
63 |
+
return 'non violence'
|
64 |
+
else:
|
65 |
+
return 'violence'
|
66 |
+
# return preds
|
67 |
+
demo = gr.Blocks()
|
68 |
+
with demo:
|
69 |
+
with gr.Row():
|
70 |
+
with gr.Column():
|
71 |
+
with gr.Row():
|
72 |
+
input_video = gr.Video(label='Input Video', height=360)
|
73 |
+
# input_video = load_video(input_video)
|
74 |
+
with gr.Row():
|
75 |
+
submit_video_button = gr.Button('Submit')
|
76 |
+
with gr.Column():
|
77 |
+
label_video = gr.Label()
|
78 |
+
submit_video_button.click(fn=iinterface_video, inputs=input_video, outputs=label_video)
|
79 |
+
demo.launch()
|
app.txt
DELETED
File without changes
|