import torch import torch.nn as nn from torchvision.transforms._transforms_video import (CenterCropVideo,NormalizeVideo) from torchvision.transforms import (Compose,Lambda,RandomCrop,RandomHorizontalFlip,Resize) from pytorchvideo.transforms import (ApplyTransformToKey,Normalize,RandomShortSideScale,UniformTemporalSubsample,Permute) import numpy as np import gradio as gr import spaces # torch.save(model.state_dict(), 'model.pth') video_transform = Compose([ ApplyTransformToKey(key = 'video', transform = Compose([ UniformTemporalSubsample(20), Lambda(lambda x:x/255), Normalize((0.45,0.45,0.45),(0.225,0.225,0.225)), RandomShortSideScale(min_size = 248, max_size = 256), CenterCropVideo(224), RandomHorizontalFlip(p=0.5), ]), ), ]) #============================================================ class mymodel_test(nn.Module): def __init__(self): super(mymodel_test,self).__init__() self.video_model = torch.hub.load('facebookresearch/pytorchvideo','efficient_x3d_xs', pretrained=False) self.relu = nn.ReLU() self.Linear = nn.Linear(400,1) def forward(self,x): x = self.relu(self.video_model(x)) x = self.Linear(x) return x #============================================================ model_test = mymodel_test() model_test.load_state_dict(torch.load('model.pth')) from pytorchvideo.data.encoded_video import EncodedVideo @spaces.GPU def interface_video(video_path): video = EncodedVideo.from_path(video_path) video_data = video.get_clip(0,2) video_data = video_transform(video_data) video_data['video'].shape model = model_test inputs = video_data['video'] inputs = torch.unsqueeze(inputs, 0 ) inputs.shape preds = model(inputs) preds = preds.detach().cpu().numpy() preds = np.where(preds>0.5,1,0) if(preds==0): return 'non violence' else: return 'violence' # return preds demo = gr.Blocks() with demo: with gr.Row(): with gr.Column(): with gr.Row(): input_video = gr.Video(label='Input Video', height=360) # input_video = load_video(input_video) with gr.Row(): submit_video_button = gr.Button('Submit') with gr.Column(): label_video = gr.Label() submit_video_button.click(fn=interface_video, inputs=input_video, outputs=label_video) demo.launch()