File size: 8,290 Bytes
25d2eb7
2827b8a
 
 
 
7a1cd7a
58d8f1a
 
2827b8a
f5eb405
 
 
3b4c438
 
f5eb405
3b4c438
 
 
 
f5eb405
3b4c438
f5eb405
 
 
6b0e834
 
 
 
 
58d8f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a1cd7a
 
58d8f1a
7a1cd7a
4f0286f
2827b8a
 
 
7a1cd7a
7ed3881
 
 
3b4c438
58d8f1a
2827b8a
f5eb405
 
 
3bd0812
9f13004
 
 
f5eb405
3b4c438
9f13004
 
58d8f1a
 
 
 
f5eb405
 
 
3bd0812
4b1ac5a
9f13004
 
4b1ac5a
3bd0812
4b1ac5a
9f13004
 
58d8f1a
 
 
 
 
 
3bd0812
f5eb405
9f13004
 
4f0286f
6b0e834
3b4c438
3bd0812
5422464
 
 
 
3bd0812
5422464
 
58d8f1a
 
 
3bd0812
5422464
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd0812
9f13004
 
 
3bd0812
f5eb405
4f0286f
 
 
f5eb405
6b0e834
 
 
3b4c438
4f0286f
 
 
 
 
 
58d8f1a
4f0286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d8f1a
4f0286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d8f1a
4f0286f
 
 
 
 
 
 
 
 
 
 
 
58d8f1a
4f0286f
58d8f1a
4f0286f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
from datasets import load_dataset
import numpy as np
from model2vec import StaticModel
from reach import Reach
from difflib import ndiff
import tqdm
from contextlib import contextmanager

# Load the model at startup
model = StaticModel.from_pretrained("minishlab/M2V_base_output")

# Update default dataset to 'sst2' and set default threshold to 0.9
default_dataset1_name = "sst2"
default_dataset1_split = "train"
default_dataset2_name = "sst2"
default_dataset2_split = "validation"
default_text_column = "sentence"
default_threshold = 0.9

# Load the default datasets at startup
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)

def batch_iterable(iterable, batch_size):
    """Helper function to create batches from an iterable."""
    for i in range(0, len(iterable), batch_size):
        yield iterable[i:i + batch_size]

@contextmanager
def tqdm_redirect(progress):
    original_tqdm = tqdm.tqdm
    try:
        tqdm.tqdm = progress.tqdm
        yield
    finally:
        tqdm.tqdm = original_tqdm

def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
    with tqdm_redirect(progress):
        embeddings = model.encode(texts, show_progressbar=True, batch_size=batch_size)
    return embeddings

def deduplicate(
    embedding_matrix: np.ndarray,
    threshold: float,
    batch_size: int = 1024,
    progress=None
) -> tuple[np.ndarray, dict[int, int]]:
    # Existing deduplication code remains unchanged
    # Building the index
    progress(0, desc="Building search index...")
    reach = Reach(
        vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
    )

    deduplicated_indices = set(range(len(embedding_matrix)))
    duplicate_to_original_mapping = {}

    # Finding nearest neighbors
    progress(0, desc="Finding nearest neighbors...")
    results = reach.nearest_neighbor_threshold(
        embedding_matrix,
        threshold=threshold,
        batch_size=batch_size,
        show_progressbar=False,  # Disable internal progress bar
    )

    # Processing duplicates with a progress bar
    total_items = len(embedding_matrix)
    for i, similar_items in enumerate(
        progress.tqdm(results, desc="Processing duplicates", total=total_items)
    ):
        if i not in deduplicated_indices:
            continue

        similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]

        for sim_idx in similar_indices:
            if sim_idx in deduplicated_indices:
                deduplicated_indices.remove(sim_idx)
                duplicate_to_original_mapping[sim_idx] = i

    return np.array(list(deduplicated_indices)), duplicate_to_original_mapping

def display_word_differences(x: str, y: str) -> str:
    diff = ndiff(x.split(), y.split())
    return " ".join([word for word in diff if word.startswith(("+", "-"))])

def perform_deduplication(
    deduplication_type,
    dataset1_name,
    dataset1_split,
    dataset1_text_column,
    dataset2_name="",
    dataset2_split="",
    dataset2_text_column="",
    threshold=default_threshold,
    progress=gr.Progress(track_tqdm=True),
):
    try:
        # Convert threshold to float
        threshold = float(threshold)

        # Initialize status message
        status = ""

        if deduplication_type == "Single dataset":
            # Load Dataset 1
            status = "Loading Dataset 1..."
            yield status, ""
            if (
                dataset1_name == default_dataset1_name
                and dataset1_split == default_dataset1_split
            ):
                ds = ds_default1
            else:
                ds = load_dataset(dataset1_name, split=dataset1_split)

            # Extract texts
            status = "Extracting texts from Dataset 1..."
            yield status, ""
            texts = [example[dataset1_text_column] for example in ds]

            # Compute embeddings
            status = "Computing embeddings for Dataset 1..."
            yield status, ""
            embedding_matrix = compute_embeddings(
                texts,
                batch_size=64,
                progress=progress,
                desc="Computing embeddings for Dataset 1",
            )

            # Deduplicate
            status = "Deduplicating embeddings..."
            yield status, ""
            deduplicated_indices, duplicate_to_original_mapping = deduplicate(
                embedding_matrix, threshold, progress=progress
            )

            # Prepare the results
            num_duplicates = len(duplicate_to_original_mapping)
            num_total = len(texts)
            num_deduplicated = len(deduplicated_indices)

            result_text = f"**Total documents:** {num_total}\n"
            result_text += f"**Number of duplicates found:** {num_duplicates}\n"
            result_text += (
                f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
            )

            # Show deduplicated examples
            if num_duplicates > 0:
                result_text += "**Examples of duplicates found:**\n\n"
                num_examples = min(5, num_duplicates)
                for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
                    original_text = texts[original_idx]
                    duplicate_text = texts[duplicate_idx]
                    differences = display_word_differences(original_text, duplicate_text)
                    result_text += f"**Original text:**\n{original_text}\n\n"
                    result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
                    result_text += f"**Differences:**\n{differences}\n"
                    result_text += "-" * 50 + "\n\n"
            else:
                result_text += "No duplicates found."

            # Final status
            status = "Deduplication completed."
            yield status, result_text

        elif deduplication_type == "Cross-dataset":
            # Similar code for cross-dataset deduplication
            # Implement similar logic as above for cross-dataset
            pass

    except Exception as e:
        yield f"An error occurred: {e}", ""
        raise e

with gr.Blocks() as demo:
    gr.Markdown("# Semantic Deduplication")

    deduplication_type = gr.Radio(
        choices=["Single dataset", "Cross-dataset"],
        label="Deduplication Type",
        value="Single dataset",
    )

    with gr.Row():
        dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
        dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
        dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

    dataset2_inputs = gr.Column(visible=False)
    with dataset2_inputs:
        gr.Markdown("### Dataset 2")
        with gr.Row():
            dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
            dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
            dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

    threshold = gr.Slider(
        minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
    )

    compute_button = gr.Button("Compute")

    status_output = gr.Markdown()
    result_output = gr.Markdown()

    # Function to update the visibility of dataset2_inputs
    def update_visibility(deduplication_type_value):
        if deduplication_type_value == "Cross-dataset":
            return gr.update(visible=True)
        else:
            return gr.update(visible=False)

    deduplication_type.change(
        update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
    )

    compute_button.click(
        fn=perform_deduplication,
        inputs=[
            deduplication_type,
            dataset1_name,
            dataset1_split,
            dataset1_text_column,
            dataset2_name,
            dataset2_split,
            dataset2_text_column,
            threshold,
        ],
        outputs=[status_output, result_output],
    )

demo.launch()