Pringled's picture
Updates
1a5f99b
raw
history blame
57.1 kB
import gradio as gr
from datasets import load_dataset
import numpy as np
from model2vec import StaticModel
from reach import Reach
from difflib import ndiff
import tqdm
# Load the model at startup
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
# Update default dataset to 'sst2' and set default threshold to 0.9
default_dataset1_name = "sst2"
default_dataset1_split = "train"
default_dataset2_name = "sst2"
default_dataset2_split = "validation"
default_text_column = "sentence"
default_threshold = 0.9
# Load the default datasets at startup
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
def batch_iterable(iterable, batch_size):
"""Helper function to create batches from an iterable."""
for i in range(0, len(iterable), batch_size):
yield iterable[i:i + batch_size]
def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
embeddings = []
for batch in progress.tqdm(batch_iterable(texts, batch_size), total=(len(texts) + batch_size - 1) // batch_size, desc=desc):
batch_embeddings = model.encode(batch, show_progressbar=False)
embeddings.append(batch_embeddings)
return np.concatenate(embeddings, axis=0)
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
"""
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
"""
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
deduplicated_indices = set(range(len(embedding_matrix)))
duplicate_to_original_mapping = {}
results = reach.nearest_neighbor_threshold(
embedding_matrix,
threshold=threshold,
batch_size=batch_size,
show_progressbar=False
)
total_items = len(embedding_matrix)
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
if i not in deduplicated_indices:
continue
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
for sim_idx in similar_indices:
if sim_idx in deduplicated_indices:
deduplicated_indices.remove(sim_idx)
duplicate_to_original_mapping[sim_idx] = i
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
"""
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
"""
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
duplicate_indices_in_test = []
duplicate_to_original_mapping = {}
results = reach.nearest_neighbor_threshold(
embedding_matrix_2,
threshold=threshold,
batch_size=batch_size,
show_progressbar=False
)
total_items = len(embedding_matrix_2)
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
if similar_indices:
duplicate_indices_in_test.append(i)
duplicate_to_original_mapping[i] = similar_indices[0]
return duplicate_indices_in_test, duplicate_to_original_mapping
def display_word_differences(x: str, y: str) -> str:
diff = ndiff(x.split(), y.split())
return " ".join([word for word in diff if word.startswith(('+', '-'))])
def perform_deduplication(
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name="",
dataset2_split="",
dataset2_text_column="",
threshold=default_threshold,
progress=gr.Progress(track_tqdm=True)
):
try:
threshold = float(threshold)
if deduplication_type == "Single dataset":
ds = ds_default1 if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split else load_dataset(dataset1_name, split=dataset1_split)
texts = [example[dataset1_text_column] for example in ds]
embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
num_duplicates = len(duplicate_to_original_mapping)
num_total = len(texts)
num_deduplicated = len(deduplicated_indices)
result_text = f"**Total documents:** {num_total}\n"
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
if num_duplicates > 0:
result_text += "**Examples of duplicates found:**\n\n"
num_examples = min(5, num_duplicates)
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
original_text = texts[original_idx]
duplicate_text = texts[duplicate_idx]
differences = display_word_differences(original_text, duplicate_text)
result_text += f"**Original text:**\n{original_text}\n\n"
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
result_text += f"**Differences:**\n{differences}\n"
result_text += "-" * 50 + "\n\n"
else:
result_text += "No duplicates found."
yield result_text
elif deduplication_type == "Cross-dataset":
ds1 = ds_default1 if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split else load_dataset(dataset1_name, split=dataset1_split)
ds2 = ds_default2 if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split else load_dataset(dataset2_name, split=dataset2_split)
texts1 = [example[dataset1_text_column] for example in ds1]
texts2 = [example[dataset2_text_column] for example in ds2]
embedding_matrix1 = compute_embeddings(texts1, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
embedding_matrix2 = compute_embeddings(texts2, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 2")
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
num_duplicates = len(duplicate_indices_in_ds2)
num_total_ds2 = len(texts2)
num_unique_ds2 = num_total_ds2 - num_duplicates
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
if num_duplicates > 0:
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
num_examples = min(5, num_duplicates)
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
original_idx = duplicate_to_original_mapping[duplicate_idx]
original_text = texts1[original_idx]
duplicate_text = texts2[duplicate_idx]
differences = display_word_differences(original_text, duplicate_text)
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
result_text += f"**Differences:**\n{differences}\n"
result_text += "-" * 50 + "\n\n"
else:
result_text += "No duplicates found."
yield result_text
except Exception as e:
yield f"An error occurred: {e}", ""
# Adjust the height of the status_output and result_output components
with gr.Blocks(css="#status_output { height: 300px; overflow: auto; } #result_output { height: 300px; overflow: auto; }") as demo:
gr.Markdown("# Semantic Deduplication")
deduplication_type = gr.Radio(
choices=["Single dataset", "Cross-dataset"],
label="Deduplication Type",
value="Single dataset"
)
with gr.Row():
dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
dataset2_inputs = gr.Column(visible=False)
with dataset2_inputs:
gr.Markdown("### Dataset 2")
with gr.Row():
dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=default_threshold,
label="Similarity Threshold"
)
compute_button = gr.Button("Compute")
status_output = gr.Markdown(elem_id="status_output")
result_output = gr.Markdown(elem_id="result_output")
def update_visibility(deduplication_type_value):
if deduplication_type_value == "Cross-dataset":
return gr.update(visible=True)
else:
return gr.update(visible=False)
deduplication_type.change(
update_visibility,
inputs=deduplication_type,
outputs=dataset2_inputs
)
compute_button.click(
fn=perform_deduplication,
inputs=[
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name,
dataset2_split,
dataset2_text_column,
threshold
],
outputs=[status_output, result_output]
)
demo.launch()
# import gradio as gr
# from datasets import load_dataset
# import numpy as np
# from model2vec import StaticModel
# from reach import Reach
# from difflib import ndiff
# import tqdm
# # Load the model at startup
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
# # Update default dataset to 'sst2' and set default threshold to 0.9
# default_dataset1_name = "sst2"
# default_dataset1_split = "train"
# default_dataset2_name = "sst2"
# default_dataset2_split = "validation"
# default_text_column = "sentence"
# default_threshold = 0.9
# # Load the default datasets at startup
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
# def batch_iterable(iterable, batch_size):
# """Helper function to create batches from an iterable."""
# for i in range(0, len(iterable), batch_size):
# yield iterable[i:i + batch_size]
# def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
# embeddings = []
# for batch in progress.tqdm(batch_iterable(texts, batch_size), total=(len(texts) + batch_size - 1) // batch_size, desc=desc):
# batch_embeddings = model.encode(batch, show_progressbar=False)
# embeddings.append(batch_embeddings)
# return np.concatenate(embeddings, axis=0)
# def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
# """
# Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
# """
# # Building the index
# progress(0, desc="Building search index...")
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
# deduplicated_indices = set(range(len(embedding_matrix)))
# duplicate_to_original_mapping = {}
# # Finding nearest neighbors
# progress(0, desc="Finding nearest neighbors...")
# results = reach.nearest_neighbor_threshold(
# embedding_matrix,
# threshold=threshold,
# batch_size=batch_size,
# show_progressbar=False # Disable internal progress bar
# )
# # Processing duplicates with a progress bar
# total_items = len(embedding_matrix)
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
# if i not in deduplicated_indices:
# continue
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
# for sim_idx in similar_indices:
# if sim_idx in deduplicated_indices:
# deduplicated_indices.remove(sim_idx)
# duplicate_to_original_mapping[sim_idx] = i
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
# def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
# """
# Deduplicate embeddings across two datasets and return the indices of duplicates between them.
# """
# # Building the index from Dataset 1
# progress(0, desc="Building search index from Dataset 1...")
# reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
# duplicate_indices_in_test = []
# duplicate_to_original_mapping = {}
# # Finding nearest neighbors between datasets
# progress(0, desc="Finding nearest neighbors between datasets...")
# results = reach.nearest_neighbor_threshold(
# embedding_matrix_2,
# threshold=threshold,
# batch_size=batch_size,
# show_progressbar=False # Disable internal progress bar
# )
# total_items = len(embedding_matrix_2)
# # Processing duplicates with a progress bar
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
# if similar_indices:
# duplicate_indices_in_test.append(i)
# duplicate_to_original_mapping[i] = similar_indices[0]
# return duplicate_indices_in_test, duplicate_to_original_mapping
# def display_word_differences(x: str, y: str) -> str:
# diff = ndiff(x.split(), y.split())
# return " ".join([word for word in diff if word.startswith(('+', '-'))])
# def perform_deduplication(
# deduplication_type,
# dataset1_name,
# dataset1_split,
# dataset1_text_column,
# dataset2_name="",
# dataset2_split="",
# dataset2_text_column="",
# threshold=default_threshold,
# progress=gr.Progress(track_tqdm=True)
# ):
# try:
# # Convert threshold to float
# threshold = float(threshold)
# # Initialize status message
# status = ""
# if deduplication_type == "Single dataset":
# # Load Dataset 1
# status = "Loading Dataset 1..."
# yield status, ""
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
# ds = ds_default1
# else:
# ds = load_dataset(dataset1_name, split=dataset1_split)
# # Extract texts
# status = "Extracting texts from Dataset 1..."
# yield status, ""
# texts = [example[dataset1_text_column] for example in ds]
# # Compute embeddings
# status = "Computing embeddings for Dataset 1..."
# yield status, ""
# embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
# # Deduplicate
# status = "Deduplicating embeddings..."
# yield status, ""
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(
# embedding_matrix, threshold, progress=progress
# )
# # Prepare the results
# num_duplicates = len(duplicate_to_original_mapping)
# num_total = len(texts)
# num_deduplicated = len(deduplicated_indices)
# result_text = f"**Total documents:** {num_total}\n"
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
# # Show deduplicated examples
# if num_duplicates > 0:
# result_text += "**Examples of duplicates found:**\n\n"
# num_examples = min(5, num_duplicates)
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
# original_text = texts[original_idx]
# duplicate_text = texts[duplicate_idx]
# differences = display_word_differences(original_text, duplicate_text)
# result_text += f"**Original text:**\n{original_text}\n\n"
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
# result_text += f"**Differences:**\n{differences}\n"
# result_text += "-" * 50 + "\n\n"
# else:
# result_text += "No duplicates found."
# # Final status
# status = "Deduplication completed."
# yield status, result_text
# elif deduplication_type == "Cross-dataset":
# # Load Dataset 1
# status = "Loading Dataset 1..."
# yield status, ""
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
# ds1 = ds_default1
# else:
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
# # Load Dataset 2
# status = "Loading Dataset 2..."
# yield status, ""
# if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
# ds2 = ds_default2
# else:
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
# # Extract texts from Dataset 1
# status = "Extracting texts from Dataset 1..."
# yield status, ""
# texts1 = [example[dataset1_text_column] for example in ds1]
# # Extract texts from Dataset 2
# status = "Extracting texts from Dataset 2..."
# yield status, ""
# texts2 = [example[dataset2_text_column] for example in ds2]
# # Compute embeddings for Dataset 1
# status = "Computing embeddings for Dataset 1..."
# yield status, ""
# embedding_matrix1 = compute_embeddings(texts1, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
# # Compute embeddings for Dataset 2
# status = "Computing embeddings for Dataset 2..."
# yield status, ""
# embedding_matrix2 = compute_embeddings(texts2, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 2")
# # Deduplicate across datasets
# status = "Deduplicating embeddings across datasets..."
# yield status, ""
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
# embedding_matrix1, embedding_matrix2, threshold, progress=progress
# )
# num_duplicates = len(duplicate_indices_in_ds2)
# num_total_ds2 = len(texts2)
# num_unique_ds2 = num_total_ds2 - num_duplicates
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
# # Show deduplicated examples
# if num_duplicates > 0:
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
# num_examples = min(5, num_duplicates)
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
# original_idx = duplicate_to_original_mapping[duplicate_idx]
# original_text = texts1[original_idx]
# duplicate_text = texts2[duplicate_idx]
# differences = display_word_differences(original_text, duplicate_text)
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
# result_text += f"**Differences:**\n{differences}\n"
# result_text += "-" * 50 + "\n\n"
# else:
# result_text += "No duplicates found."
# # Final status
# status = "Deduplication completed."
# yield status, result_text
# except Exception as e:
# yield f"An error occurred: {e}", ""
# raise e
# with gr.Blocks() as demo:
# gr.Markdown("# Semantic Deduplication")
# deduplication_type = gr.Radio(
# choices=["Single dataset", "Cross-dataset"],
# label="Deduplication Type",
# value="Single dataset"
# )
# with gr.Row():
# dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
# dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# dataset2_inputs = gr.Column(visible=False)
# with dataset2_inputs:
# gr.Markdown("### Dataset 2")
# with gr.Row():
# dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# threshold = gr.Slider(
# minimum=0.0,
# maximum=1.0,
# value=default_threshold,
# label="Similarity Threshold"
# )
# compute_button = gr.Button("Compute")
# status_output = gr.Markdown()
# result_output = gr.Markdown()
# # Function to update the visibility of dataset2_inputs
# def update_visibility(deduplication_type_value):
# if deduplication_type_value == "Cross-dataset":
# return gr.update(visible=True)
# else:
# return gr.update(visible=False)
# deduplication_type.change(
# update_visibility,
# inputs=deduplication_type,
# outputs=dataset2_inputs
# )
# compute_button.click(
# fn=perform_deduplication,
# inputs=[
# deduplication_type,
# dataset1_name,
# dataset1_split,
# dataset1_text_column,
# dataset2_name,
# dataset2_split,
# dataset2_text_column,
# threshold
# ],
# outputs=[status_output, result_output]
# )
# demo.launch()
# import gradio as gr
# from datasets import load_dataset
# import numpy as np
# import model2vec
# from reach import Reach
# from difflib import ndiff
# # Load the model at startup
# model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
# # Default dataset parameters
# default_dataset1_name = "sst2"
# default_dataset1_split = "train"
# default_dataset2_name = "sst2"
# default_dataset2_split = "validation"
# default_text_column = "sentence"
# default_threshold = 0.9
# # Load the default datasets at startup
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
# def batch_iterable(iterable, batch_size):
# """Helper function to create batches from an iterable."""
# for i in range(0, len(iterable), batch_size):
# yield iterable[i:i + batch_size]
# def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
# embeddings = []
# total_batches = (len(texts) + batch_size - 1) // batch_size
# for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
# batch_embeddings = model.encode(batch_texts, show_progressbar=False)
# embeddings.append(batch_embeddings)
# progress((i + 1) / total_batches, desc=desc)
# return np.concatenate(embeddings, axis=0)
# def deduplicate(
# embedding_matrix: np.ndarray,
# threshold: float,
# batch_size: int = 1024,
# progress=None
# ) -> tuple[np.ndarray, dict[int, int]]:
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
# deduplicated_indices = set(range(len(embedding_matrix)))
# duplicate_to_original_mapping = {}
# results = reach.nearest_neighbor_threshold(
# embedding_matrix,
# threshold=threshold,
# batch_size=batch_size,
# show_progressbar=False,
# )
# total_items = len(embedding_matrix)
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
# if i not in deduplicated_indices:
# continue
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
# for sim_idx in similar_indices:
# if sim_idx in deduplicated_indices:
# deduplicated_indices.remove(sim_idx)
# duplicate_to_original_mapping[sim_idx] = i
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
# def display_word_differences(x: str, y: str) -> str:
# diff = ndiff(x.split(), y.split())
# return " ".join([word for word in diff if word.startswith(("+", "-"))])
# def perform_deduplication(
# deduplication_type,
# dataset1_name,
# dataset1_split,
# dataset1_text_column,
# dataset2_name="",
# dataset2_split="",
# dataset2_text_column="",
# threshold=default_threshold,
# progress=gr.Progress(track_tqdm=True),
# ):
# try:
# threshold = float(threshold)
# if deduplication_type == "Single dataset":
# ds = ds_default1 if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split else load_dataset(dataset1_name, split=dataset1_split)
# texts = [example[dataset1_text_column] for example in ds]
# embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress)
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
# num_duplicates = len(duplicate_to_original_mapping)
# num_total = len(texts)
# num_deduplicated = len(deduplicated_indices)
# result_text = f"**Total documents:** {num_total}\n"
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
# if num_duplicates > 0:
# result_text += "**Examples of duplicates found:**\n\n"
# num_examples = min(5, num_duplicates)
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
# original_text = texts[original_idx]
# duplicate_text = texts[duplicate_idx]
# differences = display_word_differences(original_text, duplicate_text)
# result_text += f"**Original text:**\n{original_text}\n\n"
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
# result_text += f"**Differences:**\n{differences}\n"
# result_text += "-" * 50 + "\n\n"
# else:
# result_text += "No duplicates found."
# yield result_text
# except Exception as e:
# yield f"An error occurred: {e}"
# # Gradio interface setup
# with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
# gr.Markdown("# Semantic Deduplication")
# deduplication_type = gr.Radio(
# choices=["Single dataset", "Cross-dataset"],
# label="Deduplication Type",
# value="Single dataset",
# )
# with gr.Row():
# dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
# dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# dataset2_inputs = gr.Column(visible=False)
# with dataset2_inputs:
# gr.Markdown("### Dataset 2")
# with gr.Row():
# dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# threshold = gr.Slider(minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold")
# compute_button = gr.Button("Compute")
# result_output = gr.Markdown()
# def update_visibility(deduplication_type_value):
# return gr.update(visible=True) if deduplication_type_value == "Cross-dataset" else gr.update(visible=False)
# deduplication_type.change(
# update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
# )
# compute_button.click(
# fn=perform_deduplication,
# inputs=[
# deduplication_type,
# dataset1_name,
# dataset1_split,
# dataset1_text_column,
# dataset2_name,
# dataset2_split,
# dataset2_text_column,
# threshold,
# ],
# outputs=[result_output],
# )
# demo.launch()
# # import gradio as gr
# # from datasets import load_dataset
# # import numpy as np
# # import model2vec
# # from reach import Reach
# # from difflib import ndiff
# # import time
# # # Load the model at startup
# # model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
# # # Default dataset parameters
# # default_dataset1_name = "sst2"
# # default_dataset1_split = "train"
# # default_dataset2_name = "sst2"
# # default_dataset2_split = "validation"
# # default_text_column = "sentence"
# # default_threshold = 0.9
# # # Load the default datasets at startup
# # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
# # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
# # def batch_iterable(iterable, batch_size):
# # """Helper function to create batches from an iterable."""
# # for i in range(0, len(iterable), batch_size):
# # yield iterable[i:i + batch_size]
# # def log_time(message, start_time=None, logs=None):
# # """Helper function to log the start and end times."""
# # current_time = time.time()
# # if start_time is not None:
# # elapsed = current_time - start_time
# # log_message = f"{message} - Took {elapsed:.2f} seconds"
# # else:
# # log_message = f"{message} - Started"
# # if logs is not None:
# # logs.append(log_message)
# # def compute_embeddings(texts, batch_size, progress, logs, desc="Computing embeddings"):
# # embeddings = []
# # total_batches = (len(texts) + batch_size - 1) // batch_size
# # for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
# # batch_embeddings = model.encode(batch_texts, show_progressbar=False)
# # embeddings.append(batch_embeddings)
# # progress((i + 1) / total_batches, desc=desc)
# # return np.concatenate(embeddings, axis=0)
# # def deduplicate(
# # embedding_matrix: np.ndarray,
# # threshold: float,
# # batch_size: int = 1024,
# # progress=None,
# # logs=None
# # ) -> tuple[np.ndarray, dict[int, int]]:
# # # Building the index
# # log_time("Building search index", logs=logs)
# # reach = Reach(
# # vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
# # )
# # deduplicated_indices = set(range(len(embedding_matrix)))
# # duplicate_to_original_mapping = {}
# # # Finding nearest neighbors
# # log_time("Finding nearest neighbors", logs=logs)
# # results = reach.nearest_neighbor_threshold(
# # embedding_matrix,
# # threshold=threshold,
# # batch_size=batch_size,
# # show_progressbar=False, # Disable internal progress bar
# # )
# # # Processing duplicates with a progress bar
# # total_items = len(embedding_matrix)
# # log_time("Processing duplicates", logs=logs)
# # for i, similar_items in enumerate(
# # progress.tqdm(results, desc="Processing duplicates", total=total_items)
# # ):
# # if i not in deduplicated_indices:
# # continue
# # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
# # for sim_idx in similar_indices:
# # if sim_idx in deduplicated_indices:
# # deduplicated_indices.remove(sim_idx)
# # duplicate_to_original_mapping[sim_idx] = i
# # return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
# # def display_word_differences(x: str, y: str) -> str:
# # diff = ndiff(x.split(), y.split())
# # return " ".join([word for word in diff if word.startswith(("+", "-"))])
# # def encode_texts(texts, progress=None, logs=None):
# # embedding_matrix = model.encode(texts, show_progressbar=False)
# # log_time("Encoding texts completed", logs=logs)
# # return embedding_matrix
# # def perform_deduplication(
# # deduplication_type,
# # dataset1_name,
# # dataset1_split,
# # dataset1_text_column,
# # dataset2_name="",
# # dataset2_split="",
# # dataset2_text_column="",
# # threshold=default_threshold,
# # progress=gr.Progress(track_tqdm=True),
# # ):
# # logs = [] # To store log messages
# # try:
# # # Convert threshold to float
# # threshold = float(threshold)
# # # Initialize status message
# # log_time("Deduplication started", logs=logs)
# # if deduplication_type == "Single dataset":
# # # Load Dataset 1
# # start_time = time.time()
# # log_time("Loading Dataset 1", logs=logs)
# # if (
# # dataset1_name == default_dataset1_name
# # and dataset1_split == default_dataset1_split
# # ):
# # ds = ds_default1
# # else:
# # ds = load_dataset(dataset1_name, split=dataset1_split)
# # log_time("Loading Dataset 1 completed", start_time=start_time, logs=logs)
# # # Extract texts
# # start_time = time.time()
# # log_time("Extracting texts from Dataset 1", logs=logs)
# # texts = [example[dataset1_text_column] for example in ds]
# # log_time("Extracting texts from Dataset 1 completed", start_time=start_time, logs=logs)
# # # Compute embeddings
# # start_time = time.time()
# # log_time("Computing embeddings for Dataset 1", logs=logs)
# # embedding_matrix = encode_texts(texts, progress=progress, logs=logs)
# # log_time("Computing embeddings for Dataset 1 completed", start_time=start_time, logs=logs)
# # # Deduplicate
# # start_time = time.time()
# # log_time("Deduplicating embeddings", logs=logs)
# # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
# # embedding_matrix, threshold, progress=progress, logs=logs
# # )
# # log_time("Deduplication completed", start_time=start_time, logs=logs)
# # # Prepare the results
# # num_duplicates = len(duplicate_to_original_mapping)
# # num_total = len(texts)
# # num_deduplicated = len(deduplicated_indices)
# # result_text = f"**Total documents:** {num_total}\n"
# # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
# # result_text += (
# # f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
# # )
# # # Show deduplicated examples
# # if num_duplicates > 0:
# # result_text += "**Examples of duplicates found:**\n\n"
# # num_examples = min(5, num_duplicates)
# # for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
# # original_text = texts[original_idx]
# # duplicate_text = texts[duplicate_idx]
# # differences = display_word_differences(original_text, duplicate_text)
# # result_text += f"**Original text:**\n{original_text}\n\n"
# # result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
# # result_text += f"**Differences:**\n{differences}\n"
# # result_text += "-" * 50 + "\n\n"
# # else:
# # result_text += "No duplicates found."
# # log_time("Deduplication process finished", logs=logs)
# # full_log = "\n".join(logs) # Combine all logs into one output
# # yield full_log, result_text
# # except Exception as e:
# # full_log = "\n".join(logs) # Combine all logs into one output in case of an error
# # yield f"An error occurred: {e}", ""
# # raise e
# # # Adjust the height of the status_output component using custom CSS
# # with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
# # gr.Markdown("# Semantic Deduplication")
# # deduplication_type = gr.Radio(
# # choices=["Single dataset", "Cross-dataset"],
# # label="Deduplication Type",
# # value="Single dataset",
# # )
# # with gr.Row():
# # dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
# # dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
# # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# # dataset2_inputs = gr.Column(visible=False)
# # with dataset2_inputs:
# # gr.Markdown("### Dataset 2")
# # with gr.Row():
# # dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
# # dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
# # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# # threshold = gr.Slider(
# # minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
# # )
# # compute_button = gr.Button("Compute")
# # # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
# # status_output = gr.Markdown(elem_id="status_output")
# # result_output = gr.Markdown()
# # # Function to update the visibility of dataset2_inputs
# # def update_visibility(deduplication_type_value):
# # if deduplication_type_value == "Cross-dataset":
# # return gr.update(visible=True)
# # else:
# # return gr.update(visible=False)
# # deduplication_type.change(
# # update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
# # )
# # compute_button.click(
# # fn=perform_deduplication,
# # inputs=[
# # deduplication_type,
# # dataset1_name,
# # dataset1_split,
# # dataset1_text_column,
# # dataset2_name,
# # dataset2_split,
# # dataset2_text_column,
# # threshold,
# # ],
# # outputs=[status_output, result_output],
# # )
# # demo.launch()
# # # import gradio as gr
# # # from datasets import load_dataset
# # # import numpy as np
# # # #from model2vec import StaticModel
# # # import model2vec
# # # from reach import Reach
# # # from difflib import ndiff
# # # # Load the model at startup
# # # model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
# # # # Default dataset parameters
# # # default_dataset1_name = "sst2"
# # # default_dataset1_split = "train"
# # # default_dataset2_name = "sst2"
# # # default_dataset2_split = "validation"
# # # default_text_column = "sentence"
# # # default_threshold = 0.9
# # # # Load the default datasets at startup
# # # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
# # # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
# # # def batch_iterable(iterable, batch_size):
# # # """Helper function to create batches from an iterable."""
# # # for i in range(0, len(iterable), batch_size):
# # # yield iterable[i:i + batch_size]
# # # def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
# # # embeddings = []
# # # total_batches = (len(texts) + batch_size - 1) // batch_size
# # # for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
# # # batch_embeddings = model.encode(batch_texts, show_progressbar=False)
# # # embeddings.append(batch_embeddings)
# # # progress((i + 1) / total_batches, desc=desc)
# # # return np.concatenate(embeddings, axis=0)
# # # def deduplicate(
# # # embedding_matrix: np.ndarray,
# # # threshold: float,
# # # batch_size: int = 1024,
# # # progress=None
# # # ) -> tuple[np.ndarray, dict[int, int]]:
# # # # Building the index
# # # progress(0, desc="Building search index...")
# # # reach = Reach(
# # # vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
# # # )
# # # deduplicated_indices = set(range(len(embedding_matrix)))
# # # duplicate_to_original_mapping = {}
# # # # Finding nearest neighbors
# # # progress(0, desc="Finding nearest neighbors...")
# # # results = reach.nearest_neighbor_threshold(
# # # embedding_matrix,
# # # threshold=threshold,
# # # batch_size=batch_size,
# # # show_progressbar=False, # Disable internal progress bar
# # # )
# # # # Processing duplicates with a progress bar
# # # total_items = len(embedding_matrix)
# # # for i, similar_items in enumerate(
# # # progress.tqdm(results, desc="Processing duplicates", total=total_items)
# # # ):
# # # if i not in deduplicated_indices:
# # # continue
# # # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
# # # for sim_idx in similar_indices:
# # # if sim_idx in deduplicated_indices:
# # # deduplicated_indices.remove(sim_idx)
# # # duplicate_to_original_mapping[sim_idx] = i
# # # return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
# # # def display_word_differences(x: str, y: str) -> str:
# # # diff = ndiff(x.split(), y.split())
# # # return " ".join([word for word in diff if word.startswith(("+", "-"))])
# # # def encode_texts(texts, progress=None):
# # # embedding_matrix = model.encode(texts, show_progressbar=False)
# # # return embedding_matrix
# # # def perform_deduplication(
# # # deduplication_type,
# # # dataset1_name,
# # # dataset1_split,
# # # dataset1_text_column,
# # # dataset2_name="",
# # # dataset2_split="",
# # # dataset2_text_column="",
# # # threshold=default_threshold,
# # # progress=gr.Progress(track_tqdm=True),
# # # ):
# # # try:
# # # # Convert threshold to float
# # # threshold = float(threshold)
# # # # Initialize status message
# # # status = ""
# # # if deduplication_type == "Single dataset":
# # # # Load Dataset 1
# # # status = "Loading Dataset 1..."
# # # yield status, ""
# # # if (
# # # dataset1_name == default_dataset1_name
# # # and dataset1_split == default_dataset1_split
# # # ):
# # # ds = ds_default1
# # # else:
# # # ds = load_dataset(dataset1_name, split=dataset1_split)
# # # # Extract texts
# # # status = "Extracting texts from Dataset 1..."
# # # yield status, ""
# # # texts = [example[dataset1_text_column] for example in ds]
# # # # Compute embeddings
# # # status = "Computing embeddings for Dataset 1..."
# # # yield status, ""
# # # embedding_matrix = encode_texts(texts, progress=progress)
# # # #embedding_matrix = model.encode(texts, show_progressbar=True)
# # # # embedding_matrix = compute_embeddings(
# # # # texts,
# # # # batch_size=64,
# # # # progress=progress,
# # # # desc="Computing embeddings for Dataset 1",
# # # # )
# # # # Deduplicate
# # # status = "Deduplicating embeddings..."
# # # yield status, ""
# # # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
# # # embedding_matrix, threshold, progress=progress
# # # )
# # # # Prepare the results
# # # num_duplicates = len(duplicate_to_original_mapping)
# # # num_total = len(texts)
# # # num_deduplicated = len(deduplicated_indices)
# # # result_text = f"**Total documents:** {num_total}\n"
# # # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
# # # result_text += (
# # # f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
# # # )
# # # # Show deduplicated examples
# # # if num_duplicates > 0:
# # # result_text += "**Examples of duplicates found:**\n\n"
# # # num_examples = min(5, num_duplicates)
# # # for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
# # # original_text = texts[original_idx]
# # # duplicate_text = texts[duplicate_idx]
# # # differences = display_word_differences(original_text, duplicate_text)
# # # result_text += f"**Original text:**\n{original_text}\n\n"
# # # result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
# # # result_text += f"**Differences:**\n{differences}\n"
# # # result_text += "-" * 50 + "\n\n"
# # # else:
# # # result_text += "No duplicates found."
# # # # Final status
# # # status = "Deduplication completed."
# # # yield status, result_text
# # # elif deduplication_type == "Cross-dataset":
# # # # Similar code for cross-dataset deduplication
# # # # Load Dataset 1
# # # status = "Loading Dataset 1..."
# # # yield status, ""
# # # if (
# # # dataset1_name == default_dataset1_name
# # # and dataset1_split == default_dataset1_split
# # # ):
# # # ds1 = ds_default1
# # # else:
# # # ds1 = load_dataset(dataset1_name, split=dataset1_split)
# # # # Load Dataset 2
# # # status = "Loading Dataset 2..."
# # # yield status, ""
# # # if (
# # # dataset2_name == default_dataset2_name
# # # and dataset2_split == default_dataset2_split
# # # ):
# # # ds2 = ds_default2
# # # else:
# # # ds2 = load_dataset(dataset2_name, split=dataset2_split)
# # # # Extract texts from Dataset 1
# # # status = "Extracting texts from Dataset 1..."
# # # yield status, ""
# # # texts1 = [example[dataset1_text_column] for example in ds1]
# # # # Extract texts from Dataset 2
# # # status = "Extracting texts from Dataset 2..."
# # # yield status, ""
# # # texts2 = [example[dataset2_text_column] for example in ds2]
# # # # Compute embeddings for Dataset 1
# # # status = "Computing embeddings for Dataset 1..."
# # # yield status, ""
# # # embedding_matrix1 = compute_embeddings(
# # # texts1,
# # # batch_size=64,
# # # progress=progress,
# # # desc="Computing embeddings for Dataset 1",
# # # )
# # # # Compute embeddings for Dataset 2
# # # status = "Computing embeddings for Dataset 2..."
# # # yield status, ""
# # # embedding_matrix2 = compute_embeddings(
# # # texts2,
# # # batch_size=64,
# # # progress=progress,
# # # desc="Computing embeddings for Dataset 2",
# # # )
# # # # Deduplicate across datasets
# # # status = "Deduplicating embeddings across datasets..."
# # # yield status, ""
# # # duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
# # # embedding_matrix1, embedding_matrix2, threshold, progress=progress
# # # )
# # # num_duplicates = len(duplicate_indices_in_ds2)
# # # num_total_ds2 = len(texts2)
# # # num_unique_ds2 = num_total_ds2 - num_duplicates
# # # result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
# # # result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
# # # result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
# # # # Show deduplicated examples
# # # if num_duplicates > 0:
# # # result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
# # # num_examples = min(5, num_duplicates)
# # # for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
# # # original_idx = duplicate_to_original_mapping[duplicate_idx]
# # # original_text = texts1[original_idx]
# # # duplicate_text = texts2[duplicate_idx]
# # # differences = display_word_differences(original_text, duplicate_text)
# # # result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
# # # result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
# # # result_text += f"**Differences:**\n{differences}\n"
# # # result_text += "-" * 50 + "\n\n"
# # # else:
# # # result_text += "No duplicates found."
# # # # Final status
# # # status = "Deduplication completed."
# # # yield status, result_text
# # # except Exception as e:
# # # yield f"An error occurred: {e}", ""
# # # raise e
# # # def deduplicate_across_datasets(
# # # embedding_matrix_1: np.ndarray,
# # # embedding_matrix_2: np.ndarray,
# # # threshold: float,
# # # batch_size: int = 1024,
# # # progress=None
# # # ) -> tuple[list[int], dict[int, int]]:
# # # # Building the index from Dataset 1
# # # progress(0, desc="Building search index from Dataset 1...")
# # # reach = Reach(
# # # vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
# # # )
# # # duplicate_indices_in_test = []
# # # duplicate_to_original_mapping = {}
# # # # Finding nearest neighbors between datasets
# # # progress(0, desc="Finding nearest neighbors between datasets...")
# # # results = reach.nearest_neighbor_threshold(
# # # embedding_matrix_2,
# # # threshold=threshold,
# # # batch_size=batch_size,
# # # show_progressbar=False, # Disable internal progress bar
# # # )
# # # total_items = len(embedding_matrix_2)
# # # # Processing duplicates with a progress bar
# # # for i, similar_items in enumerate(
# # # progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
# # # ):
# # # similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
# # # if similar_indices:
# # # duplicate_indices_in_test.append(i)
# # # duplicate_to_original_mapping[i] = similar_indices[0]
# # # return duplicate_indices_in_test, duplicate_to_original_mapping
# # # # Adjust the height of the status_output component using custom CSS
# # # with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
# # # gr.Markdown("# Semantic Deduplication")
# # # deduplication_type = gr.Radio(
# # # choices=["Single dataset", "Cross-dataset"],
# # # label="Deduplication Type",
# # # value="Single dataset",
# # # )
# # # with gr.Row():
# # # dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
# # # dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
# # # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# # # dataset2_inputs = gr.Column(visible=False)
# # # with dataset2_inputs:
# # # gr.Markdown("### Dataset 2")
# # # with gr.Row():
# # # dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
# # # dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
# # # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
# # # threshold = gr.Slider(
# # # minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
# # # )
# # # compute_button = gr.Button("Compute")
# # # # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
# # # status_output = gr.Markdown(elem_id="status_output")
# # # result_output = gr.Markdown()
# # # # Function to update the visibility of dataset2_inputs
# # # def update_visibility(deduplication_type_value):
# # # if deduplication_type_value == "Cross-dataset":
# # # return gr.update(visible=True)
# # # else:
# # # return gr.update(visible=False)
# # # deduplication_type.change(
# # # update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
# # # )
# # # compute_button.click(
# # # fn=perform_deduplication,
# # # inputs=[
# # # deduplication_type,
# # # dataset1_name,
# # # dataset1_split,
# # # dataset1_text_column,
# # # dataset2_name,
# # # dataset2_split,
# # # dataset2_text_column,
# # # threshold,
# # # ],
# # # outputs=[status_output, result_output],
# # # )
# # # demo.launch()