Updates
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from datasets import load_dataset
|
3 |
import numpy as np
|
4 |
from model2vec import StaticModel
|
|
|
5 |
from reach import Reach
|
6 |
from difflib import ndiff
|
7 |
|
@@ -24,25 +25,26 @@ ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
|
24 |
# Patch tqdm to use Gradio's progress bar
|
25 |
from tqdm import tqdm as original_tqdm
|
26 |
|
|
|
27 |
# Patch tqdm to use Gradio's progress bar
|
28 |
def patch_tqdm_for_gradio(progress):
|
29 |
class GradioTqdm(original_tqdm):
|
30 |
def __init__(self, *args, **kwargs):
|
31 |
super().__init__(*args, **kwargs)
|
32 |
self.progress = progress
|
33 |
-
# Set smaller step sizes or update more frequently based on total items
|
34 |
self.total_batches = kwargs.get('total', len(args[0])) if len(args) > 0 else 1
|
35 |
-
self.update_interval = max(1, self.total_batches // 100) # Update every 1%
|
36 |
-
|
37 |
def update(self, n=1):
|
38 |
super().update(n)
|
39 |
-
# Only update Gradio's progress every `update_interval` steps
|
40 |
if self.n % self.update_interval == 0 or self.n == self.total_batches:
|
41 |
self.progress(self.n / self.total_batches)
|
42 |
|
43 |
return GradioTqdm
|
44 |
|
45 |
-
|
|
|
|
|
46 |
|
47 |
# Function to patch the original encode function with our Gradio tqdm
|
48 |
def original_encode_with_tqdm(original_encode_func, patched_tqdm):
|
@@ -153,8 +155,9 @@ def perform_deduplication(
|
|
153 |
yield status, ""
|
154 |
texts = [example[dataset1_text_column] for example in ds]
|
155 |
|
156 |
-
patched_tqdm = patch_tqdm_for_gradio(progress)
|
157 |
-
|
|
|
158 |
# Compute embeddings
|
159 |
status = "Computing embeddings for Dataset 1..."
|
160 |
yield status, ""
|
|
|
2 |
from datasets import load_dataset
|
3 |
import numpy as np
|
4 |
from model2vec import StaticModel
|
5 |
+
import model2vec
|
6 |
from reach import Reach
|
7 |
from difflib import ndiff
|
8 |
|
|
|
25 |
# Patch tqdm to use Gradio's progress bar
|
26 |
from tqdm import tqdm as original_tqdm
|
27 |
|
28 |
+
# Patch tqdm to use Gradio's progress bar
|
29 |
# Patch tqdm to use Gradio's progress bar
|
30 |
def patch_tqdm_for_gradio(progress):
|
31 |
class GradioTqdm(original_tqdm):
|
32 |
def __init__(self, *args, **kwargs):
|
33 |
super().__init__(*args, **kwargs)
|
34 |
self.progress = progress
|
|
|
35 |
self.total_batches = kwargs.get('total', len(args[0])) if len(args) > 0 else 1
|
36 |
+
self.update_interval = max(1, self.total_batches // 100) # Update every 1%
|
37 |
+
|
38 |
def update(self, n=1):
|
39 |
super().update(n)
|
|
|
40 |
if self.n % self.update_interval == 0 or self.n == self.total_batches:
|
41 |
self.progress(self.n / self.total_batches)
|
42 |
|
43 |
return GradioTqdm
|
44 |
|
45 |
+
def patch_model2vec_tqdm(progress):
|
46 |
+
patched_tqdm = patch_tqdm_for_gradio(progress)
|
47 |
+
model2vec.tqdm = patched_tqdm # Replace tqdm in the StaticModel's module
|
48 |
|
49 |
# Function to patch the original encode function with our Gradio tqdm
|
50 |
def original_encode_with_tqdm(original_encode_func, patched_tqdm):
|
|
|
155 |
yield status, ""
|
156 |
texts = [example[dataset1_text_column] for example in ds]
|
157 |
|
158 |
+
#patched_tqdm = patch_tqdm_for_gradio(progress)
|
159 |
+
patch_model2vec_tqdm(progress)
|
160 |
+
#model.encode = original_encode_with_tqdm(model.encode, patched_tqdm)
|
161 |
# Compute embeddings
|
162 |
status = "Computing embeddings for Dataset 1..."
|
163 |
yield status, ""
|