Updates
Browse files
app.py
CHANGED
|
@@ -1,14 +1,16 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from datasets import load_dataset
|
| 3 |
import numpy as np
|
| 4 |
-
import
|
| 5 |
from reach import Reach
|
| 6 |
from difflib import ndiff
|
|
|
|
| 7 |
|
| 8 |
# Load the model at startup
|
| 9 |
-
model =
|
| 10 |
|
| 11 |
-
#
|
| 12 |
default_dataset1_name = "sst2"
|
| 13 |
default_dataset1_split = "train"
|
| 14 |
default_dataset2_name = "sst2"
|
|
@@ -27,37 +29,39 @@ def batch_iterable(iterable, batch_size):
|
|
| 27 |
|
| 28 |
def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 29 |
embeddings = []
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 33 |
embeddings.append(batch_embeddings)
|
| 34 |
-
progress((i + 1) / total_batches, desc=desc)
|
| 35 |
return np.concatenate(embeddings, axis=0)
|
| 36 |
|
| 37 |
-
def deduplicate(
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 44 |
|
| 45 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
| 46 |
duplicate_to_original_mapping = {}
|
| 47 |
|
|
|
|
|
|
|
| 48 |
results = reach.nearest_neighbor_threshold(
|
| 49 |
embedding_matrix,
|
| 50 |
threshold=threshold,
|
| 51 |
batch_size=batch_size,
|
| 52 |
-
show_progressbar=False
|
| 53 |
)
|
| 54 |
|
|
|
|
| 55 |
total_items = len(embedding_matrix)
|
| 56 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 57 |
if i not in deduplicated_indices:
|
| 58 |
continue
|
| 59 |
|
| 60 |
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
|
|
|
| 61 |
for sim_idx in similar_indices:
|
| 62 |
if sim_idx in deduplicated_indices:
|
| 63 |
deduplicated_indices.remove(sim_idx)
|
|
@@ -65,9 +69,40 @@ def deduplicate(
|
|
| 65 |
|
| 66 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
def display_word_differences(x: str, y: str) -> str:
|
| 69 |
diff = ndiff(x.split(), y.split())
|
| 70 |
-
return " ".join([word for word in diff if word.startswith((
|
| 71 |
|
| 72 |
def perform_deduplication(
|
| 73 |
deduplication_type,
|
|
@@ -78,18 +113,42 @@ def perform_deduplication(
|
|
| 78 |
dataset2_split="",
|
| 79 |
dataset2_text_column="",
|
| 80 |
threshold=default_threshold,
|
| 81 |
-
progress=gr.Progress(track_tqdm=True)
|
| 82 |
):
|
| 83 |
try:
|
|
|
|
| 84 |
threshold = float(threshold)
|
| 85 |
|
|
|
|
|
|
|
|
|
|
| 86 |
if deduplication_type == "Single dataset":
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
texts = [example[dataset1_text_column] for example in ds]
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
num_duplicates = len(duplicate_to_original_mapping)
|
| 94 |
num_total = len(texts)
|
| 95 |
num_deduplicated = len(deduplicated_indices)
|
|
@@ -98,6 +157,7 @@ def perform_deduplication(
|
|
| 98 |
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 99 |
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 100 |
|
|
|
|
| 101 |
if num_duplicates > 0:
|
| 102 |
result_text += "**Examples of duplicates found:**\n\n"
|
| 103 |
num_examples = min(5, num_duplicates)
|
|
@@ -112,19 +172,93 @@ def perform_deduplication(
|
|
| 112 |
else:
|
| 113 |
result_text += "No duplicates found."
|
| 114 |
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
except Exception as e:
|
| 118 |
-
yield f"An error occurred: {e}"
|
|
|
|
| 119 |
|
| 120 |
-
|
| 121 |
-
with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 122 |
gr.Markdown("# Semantic Deduplication")
|
| 123 |
|
| 124 |
deduplication_type = gr.Radio(
|
| 125 |
choices=["Single dataset", "Cross-dataset"],
|
| 126 |
label="Deduplication Type",
|
| 127 |
-
value="Single dataset"
|
| 128 |
)
|
| 129 |
|
| 130 |
with gr.Row():
|
|
@@ -140,17 +274,29 @@ with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
|
| 140 |
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 141 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 142 |
|
| 143 |
-
threshold = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
compute_button = gr.Button("Compute")
|
| 146 |
|
|
|
|
| 147 |
result_output = gr.Markdown()
|
| 148 |
|
|
|
|
| 149 |
def update_visibility(deduplication_type_value):
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
deduplication_type.change(
|
| 153 |
-
update_visibility,
|
|
|
|
|
|
|
| 154 |
)
|
| 155 |
|
| 156 |
compute_button.click(
|
|
@@ -163,9 +309,9 @@ with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
|
| 163 |
dataset2_name,
|
| 164 |
dataset2_split,
|
| 165 |
dataset2_text_column,
|
| 166 |
-
threshold
|
| 167 |
],
|
| 168 |
-
outputs=[result_output]
|
| 169 |
)
|
| 170 |
|
| 171 |
demo.launch()
|
|
@@ -177,7 +323,6 @@ demo.launch()
|
|
| 177 |
# import model2vec
|
| 178 |
# from reach import Reach
|
| 179 |
# from difflib import ndiff
|
| 180 |
-
# import time
|
| 181 |
|
| 182 |
# # Load the model at startup
|
| 183 |
# model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
@@ -199,19 +344,7 @@ demo.launch()
|
|
| 199 |
# for i in range(0, len(iterable), batch_size):
|
| 200 |
# yield iterable[i:i + batch_size]
|
| 201 |
|
| 202 |
-
# def
|
| 203 |
-
# """Helper function to log the start and end times."""
|
| 204 |
-
# current_time = time.time()
|
| 205 |
-
# if start_time is not None:
|
| 206 |
-
# elapsed = current_time - start_time
|
| 207 |
-
# log_message = f"{message} - Took {elapsed:.2f} seconds"
|
| 208 |
-
# else:
|
| 209 |
-
# log_message = f"{message} - Started"
|
| 210 |
-
|
| 211 |
-
# if logs is not None:
|
| 212 |
-
# logs.append(log_message)
|
| 213 |
-
|
| 214 |
-
# def compute_embeddings(texts, batch_size, progress, logs, desc="Computing embeddings"):
|
| 215 |
# embeddings = []
|
| 216 |
# total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 217 |
# for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
|
@@ -224,38 +357,26 @@ demo.launch()
|
|
| 224 |
# embedding_matrix: np.ndarray,
|
| 225 |
# threshold: float,
|
| 226 |
# batch_size: int = 1024,
|
| 227 |
-
# progress=None
|
| 228 |
-
# logs=None
|
| 229 |
# ) -> tuple[np.ndarray, dict[int, int]]:
|
| 230 |
-
#
|
| 231 |
-
# log_time("Building search index", logs=logs)
|
| 232 |
-
# reach = Reach(
|
| 233 |
-
# vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
| 234 |
-
# )
|
| 235 |
|
| 236 |
# deduplicated_indices = set(range(len(embedding_matrix)))
|
| 237 |
# duplicate_to_original_mapping = {}
|
| 238 |
|
| 239 |
-
# # Finding nearest neighbors
|
| 240 |
-
# log_time("Finding nearest neighbors", logs=logs)
|
| 241 |
# results = reach.nearest_neighbor_threshold(
|
| 242 |
# embedding_matrix,
|
| 243 |
# threshold=threshold,
|
| 244 |
# batch_size=batch_size,
|
| 245 |
-
# show_progressbar=False,
|
| 246 |
# )
|
| 247 |
|
| 248 |
-
# # Processing duplicates with a progress bar
|
| 249 |
# total_items = len(embedding_matrix)
|
| 250 |
-
#
|
| 251 |
-
# for i, similar_items in enumerate(
|
| 252 |
-
# progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
| 253 |
-
# ):
|
| 254 |
# if i not in deduplicated_indices:
|
| 255 |
# continue
|
| 256 |
|
| 257 |
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 258 |
-
|
| 259 |
# for sim_idx in similar_indices:
|
| 260 |
# if sim_idx in deduplicated_indices:
|
| 261 |
# deduplicated_indices.remove(sim_idx)
|
|
@@ -267,11 +388,6 @@ demo.launch()
|
|
| 267 |
# diff = ndiff(x.split(), y.split())
|
| 268 |
# return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 269 |
|
| 270 |
-
# def encode_texts(texts, progress=None, logs=None):
|
| 271 |
-
# embedding_matrix = model.encode(texts, show_progressbar=False)
|
| 272 |
-
# log_time("Encoding texts completed", logs=logs)
|
| 273 |
-
# return embedding_matrix
|
| 274 |
-
|
| 275 |
# def perform_deduplication(
|
| 276 |
# deduplication_type,
|
| 277 |
# dataset1_name,
|
|
@@ -283,59 +399,24 @@ demo.launch()
|
|
| 283 |
# threshold=default_threshold,
|
| 284 |
# progress=gr.Progress(track_tqdm=True),
|
| 285 |
# ):
|
| 286 |
-
# logs = [] # To store log messages
|
| 287 |
# try:
|
| 288 |
-
# # Convert threshold to float
|
| 289 |
# threshold = float(threshold)
|
| 290 |
|
| 291 |
-
# # Initialize status message
|
| 292 |
-
# log_time("Deduplication started", logs=logs)
|
| 293 |
-
|
| 294 |
# if deduplication_type == "Single dataset":
|
| 295 |
-
#
|
| 296 |
-
# start_time = time.time()
|
| 297 |
-
# log_time("Loading Dataset 1", logs=logs)
|
| 298 |
-
# if (
|
| 299 |
-
# dataset1_name == default_dataset1_name
|
| 300 |
-
# and dataset1_split == default_dataset1_split
|
| 301 |
-
# ):
|
| 302 |
-
# ds = ds_default1
|
| 303 |
-
# else:
|
| 304 |
-
# ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 305 |
-
# log_time("Loading Dataset 1 completed", start_time=start_time, logs=logs)
|
| 306 |
-
|
| 307 |
-
# # Extract texts
|
| 308 |
-
# start_time = time.time()
|
| 309 |
-
# log_time("Extracting texts from Dataset 1", logs=logs)
|
| 310 |
# texts = [example[dataset1_text_column] for example in ds]
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
#
|
| 314 |
-
|
| 315 |
-
# log_time("Computing embeddings for Dataset 1", logs=logs)
|
| 316 |
-
# embedding_matrix = encode_texts(texts, progress=progress, logs=logs)
|
| 317 |
-
# log_time("Computing embeddings for Dataset 1 completed", start_time=start_time, logs=logs)
|
| 318 |
-
|
| 319 |
-
# # Deduplicate
|
| 320 |
-
# start_time = time.time()
|
| 321 |
-
# log_time("Deduplicating embeddings", logs=logs)
|
| 322 |
-
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 323 |
-
# embedding_matrix, threshold, progress=progress, logs=logs
|
| 324 |
-
# )
|
| 325 |
-
# log_time("Deduplication completed", start_time=start_time, logs=logs)
|
| 326 |
-
|
| 327 |
-
# # Prepare the results
|
| 328 |
# num_duplicates = len(duplicate_to_original_mapping)
|
| 329 |
# num_total = len(texts)
|
| 330 |
# num_deduplicated = len(deduplicated_indices)
|
| 331 |
|
| 332 |
# result_text = f"**Total documents:** {num_total}\n"
|
| 333 |
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 334 |
-
# result_text +=
|
| 335 |
-
# f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 336 |
-
# )
|
| 337 |
|
| 338 |
-
# # Show deduplicated examples
|
| 339 |
# if num_duplicates > 0:
|
| 340 |
# result_text += "**Examples of duplicates found:**\n\n"
|
| 341 |
# num_examples = min(5, num_duplicates)
|
|
@@ -350,16 +431,12 @@ demo.launch()
|
|
| 350 |
# else:
|
| 351 |
# result_text += "No duplicates found."
|
| 352 |
|
| 353 |
-
#
|
| 354 |
-
# full_log = "\n".join(logs) # Combine all logs into one output
|
| 355 |
-
# yield full_log, result_text
|
| 356 |
|
| 357 |
# except Exception as e:
|
| 358 |
-
#
|
| 359 |
-
# yield f"An error occurred: {e}", ""
|
| 360 |
-
# raise e
|
| 361 |
|
| 362 |
-
# #
|
| 363 |
# with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 364 |
# gr.Markdown("# Semantic Deduplication")
|
| 365 |
|
|
@@ -382,22 +459,14 @@ demo.launch()
|
|
| 382 |
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 383 |
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 384 |
|
| 385 |
-
# threshold = gr.Slider(
|
| 386 |
-
# minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
|
| 387 |
-
# )
|
| 388 |
|
| 389 |
# compute_button = gr.Button("Compute")
|
| 390 |
|
| 391 |
-
# # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
|
| 392 |
-
# status_output = gr.Markdown(elem_id="status_output")
|
| 393 |
# result_output = gr.Markdown()
|
| 394 |
|
| 395 |
-
# # Function to update the visibility of dataset2_inputs
|
| 396 |
# def update_visibility(deduplication_type_value):
|
| 397 |
-
# if deduplication_type_value == "Cross-dataset"
|
| 398 |
-
# return gr.update(visible=True)
|
| 399 |
-
# else:
|
| 400 |
-
# return gr.update(visible=False)
|
| 401 |
|
| 402 |
# deduplication_type.change(
|
| 403 |
# update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
|
@@ -415,21 +484,19 @@ demo.launch()
|
|
| 415 |
# dataset2_text_column,
|
| 416 |
# threshold,
|
| 417 |
# ],
|
| 418 |
-
# outputs=[
|
| 419 |
# )
|
| 420 |
|
| 421 |
# demo.launch()
|
| 422 |
|
| 423 |
|
| 424 |
-
|
| 425 |
# # import gradio as gr
|
| 426 |
# # from datasets import load_dataset
|
| 427 |
# # import numpy as np
|
| 428 |
-
# # #from model2vec import StaticModel
|
| 429 |
# # import model2vec
|
| 430 |
# # from reach import Reach
|
| 431 |
# # from difflib import ndiff
|
| 432 |
-
|
| 433 |
|
| 434 |
# # # Load the model at startup
|
| 435 |
# # model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
@@ -446,13 +513,24 @@ demo.launch()
|
|
| 446 |
# # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 447 |
# # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 448 |
|
| 449 |
-
|
| 450 |
# # def batch_iterable(iterable, batch_size):
|
| 451 |
# # """Helper function to create batches from an iterable."""
|
| 452 |
# # for i in range(0, len(iterable), batch_size):
|
| 453 |
# # yield iterable[i:i + batch_size]
|
| 454 |
|
| 455 |
-
# # def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
# # embeddings = []
|
| 457 |
# # total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 458 |
# # for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
|
@@ -465,10 +543,11 @@ demo.launch()
|
|
| 465 |
# # embedding_matrix: np.ndarray,
|
| 466 |
# # threshold: float,
|
| 467 |
# # batch_size: int = 1024,
|
| 468 |
-
# # progress=None
|
|
|
|
| 469 |
# # ) -> tuple[np.ndarray, dict[int, int]]:
|
| 470 |
# # # Building the index
|
| 471 |
-
# #
|
| 472 |
# # reach = Reach(
|
| 473 |
# # vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
| 474 |
# # )
|
|
@@ -477,7 +556,7 @@ demo.launch()
|
|
| 477 |
# # duplicate_to_original_mapping = {}
|
| 478 |
|
| 479 |
# # # Finding nearest neighbors
|
| 480 |
-
# #
|
| 481 |
# # results = reach.nearest_neighbor_threshold(
|
| 482 |
# # embedding_matrix,
|
| 483 |
# # threshold=threshold,
|
|
@@ -487,6 +566,7 @@ demo.launch()
|
|
| 487 |
|
| 488 |
# # # Processing duplicates with a progress bar
|
| 489 |
# # total_items = len(embedding_matrix)
|
|
|
|
| 490 |
# # for i, similar_items in enumerate(
|
| 491 |
# # progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
| 492 |
# # ):
|
|
@@ -506,9 +586,9 @@ demo.launch()
|
|
| 506 |
# # diff = ndiff(x.split(), y.split())
|
| 507 |
# # return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 508 |
|
| 509 |
-
|
| 510 |
-
# # def encode_texts(texts, progress=None):
|
| 511 |
# # embedding_matrix = model.encode(texts, show_progressbar=False)
|
|
|
|
| 512 |
# # return embedding_matrix
|
| 513 |
|
| 514 |
# # def perform_deduplication(
|
|
@@ -522,17 +602,18 @@ demo.launch()
|
|
| 522 |
# # threshold=default_threshold,
|
| 523 |
# # progress=gr.Progress(track_tqdm=True),
|
| 524 |
# # ):
|
|
|
|
| 525 |
# # try:
|
| 526 |
# # # Convert threshold to float
|
| 527 |
# # threshold = float(threshold)
|
| 528 |
|
| 529 |
# # # Initialize status message
|
| 530 |
-
# #
|
| 531 |
|
| 532 |
# # if deduplication_type == "Single dataset":
|
| 533 |
# # # Load Dataset 1
|
| 534 |
-
# #
|
| 535 |
-
# #
|
| 536 |
# # if (
|
| 537 |
# # dataset1_name == default_dataset1_name
|
| 538 |
# # and dataset1_split == default_dataset1_split
|
|
@@ -540,29 +621,27 @@ demo.launch()
|
|
| 540 |
# # ds = ds_default1
|
| 541 |
# # else:
|
| 542 |
# # ds = load_dataset(dataset1_name, split=dataset1_split)
|
|
|
|
| 543 |
|
| 544 |
# # # Extract texts
|
| 545 |
-
# #
|
| 546 |
-
# #
|
| 547 |
# # texts = [example[dataset1_text_column] for example in ds]
|
|
|
|
|
|
|
| 548 |
# # # Compute embeddings
|
| 549 |
-
# #
|
| 550 |
-
# #
|
| 551 |
-
# # embedding_matrix = encode_texts(texts, progress=progress)
|
| 552 |
-
# #
|
| 553 |
-
# # # embedding_matrix = compute_embeddings(
|
| 554 |
-
# # # texts,
|
| 555 |
-
# # # batch_size=64,
|
| 556 |
-
# # # progress=progress,
|
| 557 |
-
# # # desc="Computing embeddings for Dataset 1",
|
| 558 |
-
# # # )
|
| 559 |
|
| 560 |
# # # Deduplicate
|
| 561 |
-
# #
|
| 562 |
-
# #
|
| 563 |
# # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 564 |
-
# # embedding_matrix, threshold, progress=progress
|
| 565 |
# # )
|
|
|
|
| 566 |
|
| 567 |
# # # Prepare the results
|
| 568 |
# # num_duplicates = len(duplicate_to_original_mapping)
|
|
@@ -590,141 +669,15 @@ demo.launch()
|
|
| 590 |
# # else:
|
| 591 |
# # result_text += "No duplicates found."
|
| 592 |
|
| 593 |
-
# #
|
| 594 |
-
# #
|
| 595 |
-
# # yield
|
| 596 |
-
|
| 597 |
-
# # elif deduplication_type == "Cross-dataset":
|
| 598 |
-
# # # Similar code for cross-dataset deduplication
|
| 599 |
-
# # # Load Dataset 1
|
| 600 |
-
# # status = "Loading Dataset 1..."
|
| 601 |
-
# # yield status, ""
|
| 602 |
-
# # if (
|
| 603 |
-
# # dataset1_name == default_dataset1_name
|
| 604 |
-
# # and dataset1_split == default_dataset1_split
|
| 605 |
-
# # ):
|
| 606 |
-
# # ds1 = ds_default1
|
| 607 |
-
# # else:
|
| 608 |
-
# # ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 609 |
-
|
| 610 |
-
# # # Load Dataset 2
|
| 611 |
-
# # status = "Loading Dataset 2..."
|
| 612 |
-
# # yield status, ""
|
| 613 |
-
# # if (
|
| 614 |
-
# # dataset2_name == default_dataset2_name
|
| 615 |
-
# # and dataset2_split == default_dataset2_split
|
| 616 |
-
# # ):
|
| 617 |
-
# # ds2 = ds_default2
|
| 618 |
-
# # else:
|
| 619 |
-
# # ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 620 |
-
|
| 621 |
-
# # # Extract texts from Dataset 1
|
| 622 |
-
# # status = "Extracting texts from Dataset 1..."
|
| 623 |
-
# # yield status, ""
|
| 624 |
-
# # texts1 = [example[dataset1_text_column] for example in ds1]
|
| 625 |
-
|
| 626 |
-
# # # Extract texts from Dataset 2
|
| 627 |
-
# # status = "Extracting texts from Dataset 2..."
|
| 628 |
-
# # yield status, ""
|
| 629 |
-
# # texts2 = [example[dataset2_text_column] for example in ds2]
|
| 630 |
-
|
| 631 |
-
# # # Compute embeddings for Dataset 1
|
| 632 |
-
# # status = "Computing embeddings for Dataset 1..."
|
| 633 |
-
# # yield status, ""
|
| 634 |
-
# # embedding_matrix1 = compute_embeddings(
|
| 635 |
-
# # texts1,
|
| 636 |
-
# # batch_size=64,
|
| 637 |
-
# # progress=progress,
|
| 638 |
-
# # desc="Computing embeddings for Dataset 1",
|
| 639 |
-
# # )
|
| 640 |
-
|
| 641 |
-
# # # Compute embeddings for Dataset 2
|
| 642 |
-
# # status = "Computing embeddings for Dataset 2..."
|
| 643 |
-
# # yield status, ""
|
| 644 |
-
# # embedding_matrix2 = compute_embeddings(
|
| 645 |
-
# # texts2,
|
| 646 |
-
# # batch_size=64,
|
| 647 |
-
# # progress=progress,
|
| 648 |
-
# # desc="Computing embeddings for Dataset 2",
|
| 649 |
-
# # )
|
| 650 |
-
|
| 651 |
-
# # # Deduplicate across datasets
|
| 652 |
-
# # status = "Deduplicating embeddings across datasets..."
|
| 653 |
-
# # yield status, ""
|
| 654 |
-
# # duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 655 |
-
# # embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 656 |
-
# # )
|
| 657 |
-
|
| 658 |
-
# # num_duplicates = len(duplicate_indices_in_ds2)
|
| 659 |
-
# # num_total_ds2 = len(texts2)
|
| 660 |
-
# # num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 661 |
-
|
| 662 |
-
# # result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 663 |
-
# # result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 664 |
-
# # result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 665 |
-
|
| 666 |
-
# # # Show deduplicated examples
|
| 667 |
-
# # if num_duplicates > 0:
|
| 668 |
-
# # result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 669 |
-
# # num_examples = min(5, num_duplicates)
|
| 670 |
-
# # for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 671 |
-
# # original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 672 |
-
# # original_text = texts1[original_idx]
|
| 673 |
-
# # duplicate_text = texts2[duplicate_idx]
|
| 674 |
-
# # differences = display_word_differences(original_text, duplicate_text)
|
| 675 |
-
# # result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 676 |
-
# # result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 677 |
-
# # result_text += f"**Differences:**\n{differences}\n"
|
| 678 |
-
# # result_text += "-" * 50 + "\n\n"
|
| 679 |
-
# # else:
|
| 680 |
-
# # result_text += "No duplicates found."
|
| 681 |
-
|
| 682 |
-
# # # Final status
|
| 683 |
-
# # status = "Deduplication completed."
|
| 684 |
-
# # yield status, result_text
|
| 685 |
|
| 686 |
# # except Exception as e:
|
|
|
|
| 687 |
# # yield f"An error occurred: {e}", ""
|
| 688 |
# # raise e
|
| 689 |
|
| 690 |
-
# # def deduplicate_across_datasets(
|
| 691 |
-
# # embedding_matrix_1: np.ndarray,
|
| 692 |
-
# # embedding_matrix_2: np.ndarray,
|
| 693 |
-
# # threshold: float,
|
| 694 |
-
# # batch_size: int = 1024,
|
| 695 |
-
# # progress=None
|
| 696 |
-
# # ) -> tuple[list[int], dict[int, int]]:
|
| 697 |
-
# # # Building the index from Dataset 1
|
| 698 |
-
# # progress(0, desc="Building search index from Dataset 1...")
|
| 699 |
-
# # reach = Reach(
|
| 700 |
-
# # vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
|
| 701 |
-
# # )
|
| 702 |
-
|
| 703 |
-
# # duplicate_indices_in_test = []
|
| 704 |
-
# # duplicate_to_original_mapping = {}
|
| 705 |
-
|
| 706 |
-
# # # Finding nearest neighbors between datasets
|
| 707 |
-
# # progress(0, desc="Finding nearest neighbors between datasets...")
|
| 708 |
-
# # results = reach.nearest_neighbor_threshold(
|
| 709 |
-
# # embedding_matrix_2,
|
| 710 |
-
# # threshold=threshold,
|
| 711 |
-
# # batch_size=batch_size,
|
| 712 |
-
# # show_progressbar=False, # Disable internal progress bar
|
| 713 |
-
# # )
|
| 714 |
-
|
| 715 |
-
# # total_items = len(embedding_matrix_2)
|
| 716 |
-
# # # Processing duplicates with a progress bar
|
| 717 |
-
# # for i, similar_items in enumerate(
|
| 718 |
-
# # progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
|
| 719 |
-
# # ):
|
| 720 |
-
# # similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 721 |
-
|
| 722 |
-
# # if similar_indices:
|
| 723 |
-
# # duplicate_indices_in_test.append(i)
|
| 724 |
-
# # duplicate_to_original_mapping[i] = similar_indices[0]
|
| 725 |
-
|
| 726 |
-
# # return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 727 |
-
|
| 728 |
# # # Adjust the height of the status_output component using custom CSS
|
| 729 |
# # with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 730 |
# # gr.Markdown("# Semantic Deduplication")
|
|
@@ -785,3 +738,369 @@ demo.launch()
|
|
| 785 |
# # )
|
| 786 |
|
| 787 |
# # demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
import gradio as gr
|
| 3 |
from datasets import load_dataset
|
| 4 |
import numpy as np
|
| 5 |
+
from model2vec import StaticModel
|
| 6 |
from reach import Reach
|
| 7 |
from difflib import ndiff
|
| 8 |
+
import tqdm
|
| 9 |
|
| 10 |
# Load the model at startup
|
| 11 |
+
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 12 |
|
| 13 |
+
# Update default dataset to 'sst2' and set default threshold to 0.9
|
| 14 |
default_dataset1_name = "sst2"
|
| 15 |
default_dataset1_split = "train"
|
| 16 |
default_dataset2_name = "sst2"
|
|
|
|
| 29 |
|
| 30 |
def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 31 |
embeddings = []
|
| 32 |
+
for batch in progress.tqdm(batch_iterable(texts, batch_size), total=(len(texts) + batch_size - 1) // batch_size, desc=desc):
|
| 33 |
+
batch_embeddings = model.encode(batch, show_progressbar=False)
|
|
|
|
| 34 |
embeddings.append(batch_embeddings)
|
|
|
|
| 35 |
return np.concatenate(embeddings, axis=0)
|
| 36 |
|
| 37 |
+
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
| 38 |
+
"""
|
| 39 |
+
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 40 |
+
"""
|
| 41 |
+
# Building the index
|
| 42 |
+
progress(0, desc="Building search index...")
|
| 43 |
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 44 |
|
| 45 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
| 46 |
duplicate_to_original_mapping = {}
|
| 47 |
|
| 48 |
+
# Finding nearest neighbors
|
| 49 |
+
progress(0, desc="Finding nearest neighbors...")
|
| 50 |
results = reach.nearest_neighbor_threshold(
|
| 51 |
embedding_matrix,
|
| 52 |
threshold=threshold,
|
| 53 |
batch_size=batch_size,
|
| 54 |
+
show_progressbar=False # Disable internal progress bar
|
| 55 |
)
|
| 56 |
|
| 57 |
+
# Processing duplicates with a progress bar
|
| 58 |
total_items = len(embedding_matrix)
|
| 59 |
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 60 |
if i not in deduplicated_indices:
|
| 61 |
continue
|
| 62 |
|
| 63 |
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 64 |
+
|
| 65 |
for sim_idx in similar_indices:
|
| 66 |
if sim_idx in deduplicated_indices:
|
| 67 |
deduplicated_indices.remove(sim_idx)
|
|
|
|
| 69 |
|
| 70 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 71 |
|
| 72 |
+
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
| 73 |
+
"""
|
| 74 |
+
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 75 |
+
"""
|
| 76 |
+
# Building the index from Dataset 1
|
| 77 |
+
progress(0, desc="Building search index from Dataset 1...")
|
| 78 |
+
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 79 |
+
|
| 80 |
+
duplicate_indices_in_test = []
|
| 81 |
+
duplicate_to_original_mapping = {}
|
| 82 |
+
|
| 83 |
+
# Finding nearest neighbors between datasets
|
| 84 |
+
progress(0, desc="Finding nearest neighbors between datasets...")
|
| 85 |
+
results = reach.nearest_neighbor_threshold(
|
| 86 |
+
embedding_matrix_2,
|
| 87 |
+
threshold=threshold,
|
| 88 |
+
batch_size=batch_size,
|
| 89 |
+
show_progressbar=False # Disable internal progress bar
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
total_items = len(embedding_matrix_2)
|
| 93 |
+
# Processing duplicates with a progress bar
|
| 94 |
+
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
| 95 |
+
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 96 |
+
|
| 97 |
+
if similar_indices:
|
| 98 |
+
duplicate_indices_in_test.append(i)
|
| 99 |
+
duplicate_to_original_mapping[i] = similar_indices[0]
|
| 100 |
+
|
| 101 |
+
return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 102 |
+
|
| 103 |
def display_word_differences(x: str, y: str) -> str:
|
| 104 |
diff = ndiff(x.split(), y.split())
|
| 105 |
+
return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
| 106 |
|
| 107 |
def perform_deduplication(
|
| 108 |
deduplication_type,
|
|
|
|
| 113 |
dataset2_split="",
|
| 114 |
dataset2_text_column="",
|
| 115 |
threshold=default_threshold,
|
| 116 |
+
progress=gr.Progress(track_tqdm=True)
|
| 117 |
):
|
| 118 |
try:
|
| 119 |
+
# Convert threshold to float
|
| 120 |
threshold = float(threshold)
|
| 121 |
|
| 122 |
+
# Initialize status message
|
| 123 |
+
status = ""
|
| 124 |
+
|
| 125 |
if deduplication_type == "Single dataset":
|
| 126 |
+
# Load Dataset 1
|
| 127 |
+
status = "Loading Dataset 1..."
|
| 128 |
+
yield status, ""
|
| 129 |
+
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 130 |
+
ds = ds_default1
|
| 131 |
+
else:
|
| 132 |
+
ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 133 |
+
|
| 134 |
+
# Extract texts
|
| 135 |
+
status = "Extracting texts from Dataset 1..."
|
| 136 |
+
yield status, ""
|
| 137 |
texts = [example[dataset1_text_column] for example in ds]
|
| 138 |
|
| 139 |
+
# Compute embeddings
|
| 140 |
+
status = "Computing embeddings for Dataset 1..."
|
| 141 |
+
yield status, ""
|
| 142 |
+
embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
| 143 |
|
| 144 |
+
# Deduplicate
|
| 145 |
+
status = "Deduplicating embeddings..."
|
| 146 |
+
yield status, ""
|
| 147 |
+
deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 148 |
+
embedding_matrix, threshold, progress=progress
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# Prepare the results
|
| 152 |
num_duplicates = len(duplicate_to_original_mapping)
|
| 153 |
num_total = len(texts)
|
| 154 |
num_deduplicated = len(deduplicated_indices)
|
|
|
|
| 157 |
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 158 |
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 159 |
|
| 160 |
+
# Show deduplicated examples
|
| 161 |
if num_duplicates > 0:
|
| 162 |
result_text += "**Examples of duplicates found:**\n\n"
|
| 163 |
num_examples = min(5, num_duplicates)
|
|
|
|
| 172 |
else:
|
| 173 |
result_text += "No duplicates found."
|
| 174 |
|
| 175 |
+
# Final status
|
| 176 |
+
status = "Deduplication completed."
|
| 177 |
+
yield status, result_text
|
| 178 |
+
|
| 179 |
+
elif deduplication_type == "Cross-dataset":
|
| 180 |
+
# Load Dataset 1
|
| 181 |
+
status = "Loading Dataset 1..."
|
| 182 |
+
yield status, ""
|
| 183 |
+
if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 184 |
+
ds1 = ds_default1
|
| 185 |
+
else:
|
| 186 |
+
ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 187 |
+
|
| 188 |
+
# Load Dataset 2
|
| 189 |
+
status = "Loading Dataset 2..."
|
| 190 |
+
yield status, ""
|
| 191 |
+
if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 192 |
+
ds2 = ds_default2
|
| 193 |
+
else:
|
| 194 |
+
ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 195 |
+
|
| 196 |
+
# Extract texts from Dataset 1
|
| 197 |
+
status = "Extracting texts from Dataset 1..."
|
| 198 |
+
yield status, ""
|
| 199 |
+
texts1 = [example[dataset1_text_column] for example in ds1]
|
| 200 |
+
|
| 201 |
+
# Extract texts from Dataset 2
|
| 202 |
+
status = "Extracting texts from Dataset 2..."
|
| 203 |
+
yield status, ""
|
| 204 |
+
texts2 = [example[dataset2_text_column] for example in ds2]
|
| 205 |
+
|
| 206 |
+
# Compute embeddings for Dataset 1
|
| 207 |
+
status = "Computing embeddings for Dataset 1..."
|
| 208 |
+
yield status, ""
|
| 209 |
+
embedding_matrix1 = compute_embeddings(texts1, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
| 210 |
+
|
| 211 |
+
# Compute embeddings for Dataset 2
|
| 212 |
+
status = "Computing embeddings for Dataset 2..."
|
| 213 |
+
yield status, ""
|
| 214 |
+
embedding_matrix2 = compute_embeddings(texts2, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 2")
|
| 215 |
+
|
| 216 |
+
# Deduplicate across datasets
|
| 217 |
+
status = "Deduplicating embeddings across datasets..."
|
| 218 |
+
yield status, ""
|
| 219 |
+
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 220 |
+
embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
num_duplicates = len(duplicate_indices_in_ds2)
|
| 224 |
+
num_total_ds2 = len(texts2)
|
| 225 |
+
num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 226 |
+
|
| 227 |
+
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 228 |
+
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 229 |
+
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 230 |
+
|
| 231 |
+
# Show deduplicated examples
|
| 232 |
+
if num_duplicates > 0:
|
| 233 |
+
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 234 |
+
num_examples = min(5, num_duplicates)
|
| 235 |
+
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 236 |
+
original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 237 |
+
original_text = texts1[original_idx]
|
| 238 |
+
duplicate_text = texts2[duplicate_idx]
|
| 239 |
+
differences = display_word_differences(original_text, duplicate_text)
|
| 240 |
+
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 241 |
+
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 242 |
+
result_text += f"**Differences:**\n{differences}\n"
|
| 243 |
+
result_text += "-" * 50 + "\n\n"
|
| 244 |
+
else:
|
| 245 |
+
result_text += "No duplicates found."
|
| 246 |
+
|
| 247 |
+
# Final status
|
| 248 |
+
status = "Deduplication completed."
|
| 249 |
+
yield status, result_text
|
| 250 |
|
| 251 |
except Exception as e:
|
| 252 |
+
yield f"An error occurred: {e}", ""
|
| 253 |
+
raise e
|
| 254 |
|
| 255 |
+
with gr.Blocks() as demo:
|
|
|
|
| 256 |
gr.Markdown("# Semantic Deduplication")
|
| 257 |
|
| 258 |
deduplication_type = gr.Radio(
|
| 259 |
choices=["Single dataset", "Cross-dataset"],
|
| 260 |
label="Deduplication Type",
|
| 261 |
+
value="Single dataset"
|
| 262 |
)
|
| 263 |
|
| 264 |
with gr.Row():
|
|
|
|
| 274 |
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 275 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 276 |
|
| 277 |
+
threshold = gr.Slider(
|
| 278 |
+
minimum=0.0,
|
| 279 |
+
maximum=1.0,
|
| 280 |
+
value=default_threshold,
|
| 281 |
+
label="Similarity Threshold"
|
| 282 |
+
)
|
| 283 |
|
| 284 |
compute_button = gr.Button("Compute")
|
| 285 |
|
| 286 |
+
status_output = gr.Markdown()
|
| 287 |
result_output = gr.Markdown()
|
| 288 |
|
| 289 |
+
# Function to update the visibility of dataset2_inputs
|
| 290 |
def update_visibility(deduplication_type_value):
|
| 291 |
+
if deduplication_type_value == "Cross-dataset":
|
| 292 |
+
return gr.update(visible=True)
|
| 293 |
+
else:
|
| 294 |
+
return gr.update(visible=False)
|
| 295 |
|
| 296 |
deduplication_type.change(
|
| 297 |
+
update_visibility,
|
| 298 |
+
inputs=deduplication_type,
|
| 299 |
+
outputs=dataset2_inputs
|
| 300 |
)
|
| 301 |
|
| 302 |
compute_button.click(
|
|
|
|
| 309 |
dataset2_name,
|
| 310 |
dataset2_split,
|
| 311 |
dataset2_text_column,
|
| 312 |
+
threshold
|
| 313 |
],
|
| 314 |
+
outputs=[status_output, result_output]
|
| 315 |
)
|
| 316 |
|
| 317 |
demo.launch()
|
|
|
|
| 323 |
# import model2vec
|
| 324 |
# from reach import Reach
|
| 325 |
# from difflib import ndiff
|
|
|
|
| 326 |
|
| 327 |
# # Load the model at startup
|
| 328 |
# model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
|
| 344 |
# for i in range(0, len(iterable), batch_size):
|
| 345 |
# yield iterable[i:i + batch_size]
|
| 346 |
|
| 347 |
+
# def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
# embeddings = []
|
| 349 |
# total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 350 |
# for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
|
|
|
| 357 |
# embedding_matrix: np.ndarray,
|
| 358 |
# threshold: float,
|
| 359 |
# batch_size: int = 1024,
|
| 360 |
+
# progress=None
|
|
|
|
| 361 |
# ) -> tuple[np.ndarray, dict[int, int]]:
|
| 362 |
+
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
|
| 364 |
# deduplicated_indices = set(range(len(embedding_matrix)))
|
| 365 |
# duplicate_to_original_mapping = {}
|
| 366 |
|
|
|
|
|
|
|
| 367 |
# results = reach.nearest_neighbor_threshold(
|
| 368 |
# embedding_matrix,
|
| 369 |
# threshold=threshold,
|
| 370 |
# batch_size=batch_size,
|
| 371 |
+
# show_progressbar=False,
|
| 372 |
# )
|
| 373 |
|
|
|
|
| 374 |
# total_items = len(embedding_matrix)
|
| 375 |
+
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
|
|
|
|
|
|
|
|
|
| 376 |
# if i not in deduplicated_indices:
|
| 377 |
# continue
|
| 378 |
|
| 379 |
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
|
|
|
| 380 |
# for sim_idx in similar_indices:
|
| 381 |
# if sim_idx in deduplicated_indices:
|
| 382 |
# deduplicated_indices.remove(sim_idx)
|
|
|
|
| 388 |
# diff = ndiff(x.split(), y.split())
|
| 389 |
# return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
# def perform_deduplication(
|
| 392 |
# deduplication_type,
|
| 393 |
# dataset1_name,
|
|
|
|
| 399 |
# threshold=default_threshold,
|
| 400 |
# progress=gr.Progress(track_tqdm=True),
|
| 401 |
# ):
|
|
|
|
| 402 |
# try:
|
|
|
|
| 403 |
# threshold = float(threshold)
|
| 404 |
|
|
|
|
|
|
|
|
|
|
| 405 |
# if deduplication_type == "Single dataset":
|
| 406 |
+
# ds = ds_default1 if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split else load_dataset(dataset1_name, split=dataset1_split)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
# texts = [example[dataset1_text_column] for example in ds]
|
| 408 |
+
|
| 409 |
+
# embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress)
|
| 410 |
+
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
| 411 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 412 |
# num_duplicates = len(duplicate_to_original_mapping)
|
| 413 |
# num_total = len(texts)
|
| 414 |
# num_deduplicated = len(deduplicated_indices)
|
| 415 |
|
| 416 |
# result_text = f"**Total documents:** {num_total}\n"
|
| 417 |
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 418 |
+
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
|
|
|
|
|
|
| 419 |
|
|
|
|
| 420 |
# if num_duplicates > 0:
|
| 421 |
# result_text += "**Examples of duplicates found:**\n\n"
|
| 422 |
# num_examples = min(5, num_duplicates)
|
|
|
|
| 431 |
# else:
|
| 432 |
# result_text += "No duplicates found."
|
| 433 |
|
| 434 |
+
# yield result_text
|
|
|
|
|
|
|
| 435 |
|
| 436 |
# except Exception as e:
|
| 437 |
+
# yield f"An error occurred: {e}"
|
|
|
|
|
|
|
| 438 |
|
| 439 |
+
# # Gradio interface setup
|
| 440 |
# with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 441 |
# gr.Markdown("# Semantic Deduplication")
|
| 442 |
|
|
|
|
| 459 |
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 460 |
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 461 |
|
| 462 |
+
# threshold = gr.Slider(minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold")
|
|
|
|
|
|
|
| 463 |
|
| 464 |
# compute_button = gr.Button("Compute")
|
| 465 |
|
|
|
|
|
|
|
| 466 |
# result_output = gr.Markdown()
|
| 467 |
|
|
|
|
| 468 |
# def update_visibility(deduplication_type_value):
|
| 469 |
+
# return gr.update(visible=True) if deduplication_type_value == "Cross-dataset" else gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
# deduplication_type.change(
|
| 472 |
# update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
|
|
|
| 484 |
# dataset2_text_column,
|
| 485 |
# threshold,
|
| 486 |
# ],
|
| 487 |
+
# outputs=[result_output],
|
| 488 |
# )
|
| 489 |
|
| 490 |
# demo.launch()
|
| 491 |
|
| 492 |
|
|
|
|
| 493 |
# # import gradio as gr
|
| 494 |
# # from datasets import load_dataset
|
| 495 |
# # import numpy as np
|
|
|
|
| 496 |
# # import model2vec
|
| 497 |
# # from reach import Reach
|
| 498 |
# # from difflib import ndiff
|
| 499 |
+
# # import time
|
| 500 |
|
| 501 |
# # # Load the model at startup
|
| 502 |
# # model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
|
| 513 |
# # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 514 |
# # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 515 |
|
|
|
|
| 516 |
# # def batch_iterable(iterable, batch_size):
|
| 517 |
# # """Helper function to create batches from an iterable."""
|
| 518 |
# # for i in range(0, len(iterable), batch_size):
|
| 519 |
# # yield iterable[i:i + batch_size]
|
| 520 |
|
| 521 |
+
# # def log_time(message, start_time=None, logs=None):
|
| 522 |
+
# # """Helper function to log the start and end times."""
|
| 523 |
+
# # current_time = time.time()
|
| 524 |
+
# # if start_time is not None:
|
| 525 |
+
# # elapsed = current_time - start_time
|
| 526 |
+
# # log_message = f"{message} - Took {elapsed:.2f} seconds"
|
| 527 |
+
# # else:
|
| 528 |
+
# # log_message = f"{message} - Started"
|
| 529 |
+
|
| 530 |
+
# # if logs is not None:
|
| 531 |
+
# # logs.append(log_message)
|
| 532 |
+
|
| 533 |
+
# # def compute_embeddings(texts, batch_size, progress, logs, desc="Computing embeddings"):
|
| 534 |
# # embeddings = []
|
| 535 |
# # total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 536 |
# # for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
|
|
|
| 543 |
# # embedding_matrix: np.ndarray,
|
| 544 |
# # threshold: float,
|
| 545 |
# # batch_size: int = 1024,
|
| 546 |
+
# # progress=None,
|
| 547 |
+
# # logs=None
|
| 548 |
# # ) -> tuple[np.ndarray, dict[int, int]]:
|
| 549 |
# # # Building the index
|
| 550 |
+
# # log_time("Building search index", logs=logs)
|
| 551 |
# # reach = Reach(
|
| 552 |
# # vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
| 553 |
# # )
|
|
|
|
| 556 |
# # duplicate_to_original_mapping = {}
|
| 557 |
|
| 558 |
# # # Finding nearest neighbors
|
| 559 |
+
# # log_time("Finding nearest neighbors", logs=logs)
|
| 560 |
# # results = reach.nearest_neighbor_threshold(
|
| 561 |
# # embedding_matrix,
|
| 562 |
# # threshold=threshold,
|
|
|
|
| 566 |
|
| 567 |
# # # Processing duplicates with a progress bar
|
| 568 |
# # total_items = len(embedding_matrix)
|
| 569 |
+
# # log_time("Processing duplicates", logs=logs)
|
| 570 |
# # for i, similar_items in enumerate(
|
| 571 |
# # progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
| 572 |
# # ):
|
|
|
|
| 586 |
# # diff = ndiff(x.split(), y.split())
|
| 587 |
# # return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 588 |
|
| 589 |
+
# # def encode_texts(texts, progress=None, logs=None):
|
|
|
|
| 590 |
# # embedding_matrix = model.encode(texts, show_progressbar=False)
|
| 591 |
+
# # log_time("Encoding texts completed", logs=logs)
|
| 592 |
# # return embedding_matrix
|
| 593 |
|
| 594 |
# # def perform_deduplication(
|
|
|
|
| 602 |
# # threshold=default_threshold,
|
| 603 |
# # progress=gr.Progress(track_tqdm=True),
|
| 604 |
# # ):
|
| 605 |
+
# # logs = [] # To store log messages
|
| 606 |
# # try:
|
| 607 |
# # # Convert threshold to float
|
| 608 |
# # threshold = float(threshold)
|
| 609 |
|
| 610 |
# # # Initialize status message
|
| 611 |
+
# # log_time("Deduplication started", logs=logs)
|
| 612 |
|
| 613 |
# # if deduplication_type == "Single dataset":
|
| 614 |
# # # Load Dataset 1
|
| 615 |
+
# # start_time = time.time()
|
| 616 |
+
# # log_time("Loading Dataset 1", logs=logs)
|
| 617 |
# # if (
|
| 618 |
# # dataset1_name == default_dataset1_name
|
| 619 |
# # and dataset1_split == default_dataset1_split
|
|
|
|
| 621 |
# # ds = ds_default1
|
| 622 |
# # else:
|
| 623 |
# # ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 624 |
+
# # log_time("Loading Dataset 1 completed", start_time=start_time, logs=logs)
|
| 625 |
|
| 626 |
# # # Extract texts
|
| 627 |
+
# # start_time = time.time()
|
| 628 |
+
# # log_time("Extracting texts from Dataset 1", logs=logs)
|
| 629 |
# # texts = [example[dataset1_text_column] for example in ds]
|
| 630 |
+
# # log_time("Extracting texts from Dataset 1 completed", start_time=start_time, logs=logs)
|
| 631 |
+
|
| 632 |
# # # Compute embeddings
|
| 633 |
+
# # start_time = time.time()
|
| 634 |
+
# # log_time("Computing embeddings for Dataset 1", logs=logs)
|
| 635 |
+
# # embedding_matrix = encode_texts(texts, progress=progress, logs=logs)
|
| 636 |
+
# # log_time("Computing embeddings for Dataset 1 completed", start_time=start_time, logs=logs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 637 |
|
| 638 |
# # # Deduplicate
|
| 639 |
+
# # start_time = time.time()
|
| 640 |
+
# # log_time("Deduplicating embeddings", logs=logs)
|
| 641 |
# # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 642 |
+
# # embedding_matrix, threshold, progress=progress, logs=logs
|
| 643 |
# # )
|
| 644 |
+
# # log_time("Deduplication completed", start_time=start_time, logs=logs)
|
| 645 |
|
| 646 |
# # # Prepare the results
|
| 647 |
# # num_duplicates = len(duplicate_to_original_mapping)
|
|
|
|
| 669 |
# # else:
|
| 670 |
# # result_text += "No duplicates found."
|
| 671 |
|
| 672 |
+
# # log_time("Deduplication process finished", logs=logs)
|
| 673 |
+
# # full_log = "\n".join(logs) # Combine all logs into one output
|
| 674 |
+
# # yield full_log, result_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 675 |
|
| 676 |
# # except Exception as e:
|
| 677 |
+
# # full_log = "\n".join(logs) # Combine all logs into one output in case of an error
|
| 678 |
# # yield f"An error occurred: {e}", ""
|
| 679 |
# # raise e
|
| 680 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 681 |
# # # Adjust the height of the status_output component using custom CSS
|
| 682 |
# # with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 683 |
# # gr.Markdown("# Semantic Deduplication")
|
|
|
|
| 738 |
# # )
|
| 739 |
|
| 740 |
# # demo.launch()
|
| 741 |
+
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
# # # import gradio as gr
|
| 745 |
+
# # # from datasets import load_dataset
|
| 746 |
+
# # # import numpy as np
|
| 747 |
+
# # # #from model2vec import StaticModel
|
| 748 |
+
# # # import model2vec
|
| 749 |
+
# # # from reach import Reach
|
| 750 |
+
# # # from difflib import ndiff
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
# # # # Load the model at startup
|
| 754 |
+
# # # model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 755 |
+
|
| 756 |
+
# # # # Default dataset parameters
|
| 757 |
+
# # # default_dataset1_name = "sst2"
|
| 758 |
+
# # # default_dataset1_split = "train"
|
| 759 |
+
# # # default_dataset2_name = "sst2"
|
| 760 |
+
# # # default_dataset2_split = "validation"
|
| 761 |
+
# # # default_text_column = "sentence"
|
| 762 |
+
# # # default_threshold = 0.9
|
| 763 |
+
|
| 764 |
+
# # # # Load the default datasets at startup
|
| 765 |
+
# # # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 766 |
+
# # # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
# # # def batch_iterable(iterable, batch_size):
|
| 770 |
+
# # # """Helper function to create batches from an iterable."""
|
| 771 |
+
# # # for i in range(0, len(iterable), batch_size):
|
| 772 |
+
# # # yield iterable[i:i + batch_size]
|
| 773 |
+
|
| 774 |
+
# # # def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 775 |
+
# # # embeddings = []
|
| 776 |
+
# # # total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 777 |
+
# # # for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
| 778 |
+
# # # batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 779 |
+
# # # embeddings.append(batch_embeddings)
|
| 780 |
+
# # # progress((i + 1) / total_batches, desc=desc)
|
| 781 |
+
# # # return np.concatenate(embeddings, axis=0)
|
| 782 |
+
|
| 783 |
+
# # # def deduplicate(
|
| 784 |
+
# # # embedding_matrix: np.ndarray,
|
| 785 |
+
# # # threshold: float,
|
| 786 |
+
# # # batch_size: int = 1024,
|
| 787 |
+
# # # progress=None
|
| 788 |
+
# # # ) -> tuple[np.ndarray, dict[int, int]]:
|
| 789 |
+
# # # # Building the index
|
| 790 |
+
# # # progress(0, desc="Building search index...")
|
| 791 |
+
# # # reach = Reach(
|
| 792 |
+
# # # vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
| 793 |
+
# # # )
|
| 794 |
+
|
| 795 |
+
# # # deduplicated_indices = set(range(len(embedding_matrix)))
|
| 796 |
+
# # # duplicate_to_original_mapping = {}
|
| 797 |
+
|
| 798 |
+
# # # # Finding nearest neighbors
|
| 799 |
+
# # # progress(0, desc="Finding nearest neighbors...")
|
| 800 |
+
# # # results = reach.nearest_neighbor_threshold(
|
| 801 |
+
# # # embedding_matrix,
|
| 802 |
+
# # # threshold=threshold,
|
| 803 |
+
# # # batch_size=batch_size,
|
| 804 |
+
# # # show_progressbar=False, # Disable internal progress bar
|
| 805 |
+
# # # )
|
| 806 |
+
|
| 807 |
+
# # # # Processing duplicates with a progress bar
|
| 808 |
+
# # # total_items = len(embedding_matrix)
|
| 809 |
+
# # # for i, similar_items in enumerate(
|
| 810 |
+
# # # progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
| 811 |
+
# # # ):
|
| 812 |
+
# # # if i not in deduplicated_indices:
|
| 813 |
+
# # # continue
|
| 814 |
+
|
| 815 |
+
# # # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 816 |
+
|
| 817 |
+
# # # for sim_idx in similar_indices:
|
| 818 |
+
# # # if sim_idx in deduplicated_indices:
|
| 819 |
+
# # # deduplicated_indices.remove(sim_idx)
|
| 820 |
+
# # # duplicate_to_original_mapping[sim_idx] = i
|
| 821 |
+
|
| 822 |
+
# # # return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 823 |
+
|
| 824 |
+
# # # def display_word_differences(x: str, y: str) -> str:
|
| 825 |
+
# # # diff = ndiff(x.split(), y.split())
|
| 826 |
+
# # # return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 827 |
+
|
| 828 |
+
|
| 829 |
+
# # # def encode_texts(texts, progress=None):
|
| 830 |
+
# # # embedding_matrix = model.encode(texts, show_progressbar=False)
|
| 831 |
+
# # # return embedding_matrix
|
| 832 |
+
|
| 833 |
+
# # # def perform_deduplication(
|
| 834 |
+
# # # deduplication_type,
|
| 835 |
+
# # # dataset1_name,
|
| 836 |
+
# # # dataset1_split,
|
| 837 |
+
# # # dataset1_text_column,
|
| 838 |
+
# # # dataset2_name="",
|
| 839 |
+
# # # dataset2_split="",
|
| 840 |
+
# # # dataset2_text_column="",
|
| 841 |
+
# # # threshold=default_threshold,
|
| 842 |
+
# # # progress=gr.Progress(track_tqdm=True),
|
| 843 |
+
# # # ):
|
| 844 |
+
# # # try:
|
| 845 |
+
# # # # Convert threshold to float
|
| 846 |
+
# # # threshold = float(threshold)
|
| 847 |
+
|
| 848 |
+
# # # # Initialize status message
|
| 849 |
+
# # # status = ""
|
| 850 |
+
|
| 851 |
+
# # # if deduplication_type == "Single dataset":
|
| 852 |
+
# # # # Load Dataset 1
|
| 853 |
+
# # # status = "Loading Dataset 1..."
|
| 854 |
+
# # # yield status, ""
|
| 855 |
+
# # # if (
|
| 856 |
+
# # # dataset1_name == default_dataset1_name
|
| 857 |
+
# # # and dataset1_split == default_dataset1_split
|
| 858 |
+
# # # ):
|
| 859 |
+
# # # ds = ds_default1
|
| 860 |
+
# # # else:
|
| 861 |
+
# # # ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 862 |
+
|
| 863 |
+
# # # # Extract texts
|
| 864 |
+
# # # status = "Extracting texts from Dataset 1..."
|
| 865 |
+
# # # yield status, ""
|
| 866 |
+
# # # texts = [example[dataset1_text_column] for example in ds]
|
| 867 |
+
# # # # Compute embeddings
|
| 868 |
+
# # # status = "Computing embeddings for Dataset 1..."
|
| 869 |
+
# # # yield status, ""
|
| 870 |
+
# # # embedding_matrix = encode_texts(texts, progress=progress)
|
| 871 |
+
# # # #embedding_matrix = model.encode(texts, show_progressbar=True)
|
| 872 |
+
# # # # embedding_matrix = compute_embeddings(
|
| 873 |
+
# # # # texts,
|
| 874 |
+
# # # # batch_size=64,
|
| 875 |
+
# # # # progress=progress,
|
| 876 |
+
# # # # desc="Computing embeddings for Dataset 1",
|
| 877 |
+
# # # # )
|
| 878 |
+
|
| 879 |
+
# # # # Deduplicate
|
| 880 |
+
# # # status = "Deduplicating embeddings..."
|
| 881 |
+
# # # yield status, ""
|
| 882 |
+
# # # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 883 |
+
# # # embedding_matrix, threshold, progress=progress
|
| 884 |
+
# # # )
|
| 885 |
+
|
| 886 |
+
# # # # Prepare the results
|
| 887 |
+
# # # num_duplicates = len(duplicate_to_original_mapping)
|
| 888 |
+
# # # num_total = len(texts)
|
| 889 |
+
# # # num_deduplicated = len(deduplicated_indices)
|
| 890 |
+
|
| 891 |
+
# # # result_text = f"**Total documents:** {num_total}\n"
|
| 892 |
+
# # # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 893 |
+
# # # result_text += (
|
| 894 |
+
# # # f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 895 |
+
# # # )
|
| 896 |
+
|
| 897 |
+
# # # # Show deduplicated examples
|
| 898 |
+
# # # if num_duplicates > 0:
|
| 899 |
+
# # # result_text += "**Examples of duplicates found:**\n\n"
|
| 900 |
+
# # # num_examples = min(5, num_duplicates)
|
| 901 |
+
# # # for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 902 |
+
# # # original_text = texts[original_idx]
|
| 903 |
+
# # # duplicate_text = texts[duplicate_idx]
|
| 904 |
+
# # # differences = display_word_differences(original_text, duplicate_text)
|
| 905 |
+
# # # result_text += f"**Original text:**\n{original_text}\n\n"
|
| 906 |
+
# # # result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 907 |
+
# # # result_text += f"**Differences:**\n{differences}\n"
|
| 908 |
+
# # # result_text += "-" * 50 + "\n\n"
|
| 909 |
+
# # # else:
|
| 910 |
+
# # # result_text += "No duplicates found."
|
| 911 |
+
|
| 912 |
+
# # # # Final status
|
| 913 |
+
# # # status = "Deduplication completed."
|
| 914 |
+
# # # yield status, result_text
|
| 915 |
+
|
| 916 |
+
# # # elif deduplication_type == "Cross-dataset":
|
| 917 |
+
# # # # Similar code for cross-dataset deduplication
|
| 918 |
+
# # # # Load Dataset 1
|
| 919 |
+
# # # status = "Loading Dataset 1..."
|
| 920 |
+
# # # yield status, ""
|
| 921 |
+
# # # if (
|
| 922 |
+
# # # dataset1_name == default_dataset1_name
|
| 923 |
+
# # # and dataset1_split == default_dataset1_split
|
| 924 |
+
# # # ):
|
| 925 |
+
# # # ds1 = ds_default1
|
| 926 |
+
# # # else:
|
| 927 |
+
# # # ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 928 |
+
|
| 929 |
+
# # # # Load Dataset 2
|
| 930 |
+
# # # status = "Loading Dataset 2..."
|
| 931 |
+
# # # yield status, ""
|
| 932 |
+
# # # if (
|
| 933 |
+
# # # dataset2_name == default_dataset2_name
|
| 934 |
+
# # # and dataset2_split == default_dataset2_split
|
| 935 |
+
# # # ):
|
| 936 |
+
# # # ds2 = ds_default2
|
| 937 |
+
# # # else:
|
| 938 |
+
# # # ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 939 |
+
|
| 940 |
+
# # # # Extract texts from Dataset 1
|
| 941 |
+
# # # status = "Extracting texts from Dataset 1..."
|
| 942 |
+
# # # yield status, ""
|
| 943 |
+
# # # texts1 = [example[dataset1_text_column] for example in ds1]
|
| 944 |
+
|
| 945 |
+
# # # # Extract texts from Dataset 2
|
| 946 |
+
# # # status = "Extracting texts from Dataset 2..."
|
| 947 |
+
# # # yield status, ""
|
| 948 |
+
# # # texts2 = [example[dataset2_text_column] for example in ds2]
|
| 949 |
+
|
| 950 |
+
# # # # Compute embeddings for Dataset 1
|
| 951 |
+
# # # status = "Computing embeddings for Dataset 1..."
|
| 952 |
+
# # # yield status, ""
|
| 953 |
+
# # # embedding_matrix1 = compute_embeddings(
|
| 954 |
+
# # # texts1,
|
| 955 |
+
# # # batch_size=64,
|
| 956 |
+
# # # progress=progress,
|
| 957 |
+
# # # desc="Computing embeddings for Dataset 1",
|
| 958 |
+
# # # )
|
| 959 |
+
|
| 960 |
+
# # # # Compute embeddings for Dataset 2
|
| 961 |
+
# # # status = "Computing embeddings for Dataset 2..."
|
| 962 |
+
# # # yield status, ""
|
| 963 |
+
# # # embedding_matrix2 = compute_embeddings(
|
| 964 |
+
# # # texts2,
|
| 965 |
+
# # # batch_size=64,
|
| 966 |
+
# # # progress=progress,
|
| 967 |
+
# # # desc="Computing embeddings for Dataset 2",
|
| 968 |
+
# # # )
|
| 969 |
+
|
| 970 |
+
# # # # Deduplicate across datasets
|
| 971 |
+
# # # status = "Deduplicating embeddings across datasets..."
|
| 972 |
+
# # # yield status, ""
|
| 973 |
+
# # # duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 974 |
+
# # # embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 975 |
+
# # # )
|
| 976 |
+
|
| 977 |
+
# # # num_duplicates = len(duplicate_indices_in_ds2)
|
| 978 |
+
# # # num_total_ds2 = len(texts2)
|
| 979 |
+
# # # num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 980 |
+
|
| 981 |
+
# # # result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 982 |
+
# # # result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 983 |
+
# # # result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 984 |
+
|
| 985 |
+
# # # # Show deduplicated examples
|
| 986 |
+
# # # if num_duplicates > 0:
|
| 987 |
+
# # # result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 988 |
+
# # # num_examples = min(5, num_duplicates)
|
| 989 |
+
# # # for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 990 |
+
# # # original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 991 |
+
# # # original_text = texts1[original_idx]
|
| 992 |
+
# # # duplicate_text = texts2[duplicate_idx]
|
| 993 |
+
# # # differences = display_word_differences(original_text, duplicate_text)
|
| 994 |
+
# # # result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 995 |
+
# # # result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 996 |
+
# # # result_text += f"**Differences:**\n{differences}\n"
|
| 997 |
+
# # # result_text += "-" * 50 + "\n\n"
|
| 998 |
+
# # # else:
|
| 999 |
+
# # # result_text += "No duplicates found."
|
| 1000 |
+
|
| 1001 |
+
# # # # Final status
|
| 1002 |
+
# # # status = "Deduplication completed."
|
| 1003 |
+
# # # yield status, result_text
|
| 1004 |
+
|
| 1005 |
+
# # # except Exception as e:
|
| 1006 |
+
# # # yield f"An error occurred: {e}", ""
|
| 1007 |
+
# # # raise e
|
| 1008 |
+
|
| 1009 |
+
# # # def deduplicate_across_datasets(
|
| 1010 |
+
# # # embedding_matrix_1: np.ndarray,
|
| 1011 |
+
# # # embedding_matrix_2: np.ndarray,
|
| 1012 |
+
# # # threshold: float,
|
| 1013 |
+
# # # batch_size: int = 1024,
|
| 1014 |
+
# # # progress=None
|
| 1015 |
+
# # # ) -> tuple[list[int], dict[int, int]]:
|
| 1016 |
+
# # # # Building the index from Dataset 1
|
| 1017 |
+
# # # progress(0, desc="Building search index from Dataset 1...")
|
| 1018 |
+
# # # reach = Reach(
|
| 1019 |
+
# # # vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
|
| 1020 |
+
# # # )
|
| 1021 |
+
|
| 1022 |
+
# # # duplicate_indices_in_test = []
|
| 1023 |
+
# # # duplicate_to_original_mapping = {}
|
| 1024 |
+
|
| 1025 |
+
# # # # Finding nearest neighbors between datasets
|
| 1026 |
+
# # # progress(0, desc="Finding nearest neighbors between datasets...")
|
| 1027 |
+
# # # results = reach.nearest_neighbor_threshold(
|
| 1028 |
+
# # # embedding_matrix_2,
|
| 1029 |
+
# # # threshold=threshold,
|
| 1030 |
+
# # # batch_size=batch_size,
|
| 1031 |
+
# # # show_progressbar=False, # Disable internal progress bar
|
| 1032 |
+
# # # )
|
| 1033 |
+
|
| 1034 |
+
# # # total_items = len(embedding_matrix_2)
|
| 1035 |
+
# # # # Processing duplicates with a progress bar
|
| 1036 |
+
# # # for i, similar_items in enumerate(
|
| 1037 |
+
# # # progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
|
| 1038 |
+
# # # ):
|
| 1039 |
+
# # # similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 1040 |
+
|
| 1041 |
+
# # # if similar_indices:
|
| 1042 |
+
# # # duplicate_indices_in_test.append(i)
|
| 1043 |
+
# # # duplicate_to_original_mapping[i] = similar_indices[0]
|
| 1044 |
+
|
| 1045 |
+
# # # return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 1046 |
+
|
| 1047 |
+
# # # # Adjust the height of the status_output component using custom CSS
|
| 1048 |
+
# # # with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 1049 |
+
# # # gr.Markdown("# Semantic Deduplication")
|
| 1050 |
+
|
| 1051 |
+
# # # deduplication_type = gr.Radio(
|
| 1052 |
+
# # # choices=["Single dataset", "Cross-dataset"],
|
| 1053 |
+
# # # label="Deduplication Type",
|
| 1054 |
+
# # # value="Single dataset",
|
| 1055 |
+
# # # )
|
| 1056 |
+
|
| 1057 |
+
# # # with gr.Row():
|
| 1058 |
+
# # # dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
|
| 1059 |
+
# # # dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
| 1060 |
+
# # # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 1061 |
+
|
| 1062 |
+
# # # dataset2_inputs = gr.Column(visible=False)
|
| 1063 |
+
# # # with dataset2_inputs:
|
| 1064 |
+
# # # gr.Markdown("### Dataset 2")
|
| 1065 |
+
# # # with gr.Row():
|
| 1066 |
+
# # # dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
|
| 1067 |
+
# # # dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 1068 |
+
# # # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 1069 |
+
|
| 1070 |
+
# # # threshold = gr.Slider(
|
| 1071 |
+
# # # minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
|
| 1072 |
+
# # # )
|
| 1073 |
+
|
| 1074 |
+
# # # compute_button = gr.Button("Compute")
|
| 1075 |
+
|
| 1076 |
+
# # # # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
|
| 1077 |
+
# # # status_output = gr.Markdown(elem_id="status_output")
|
| 1078 |
+
# # # result_output = gr.Markdown()
|
| 1079 |
+
|
| 1080 |
+
# # # # Function to update the visibility of dataset2_inputs
|
| 1081 |
+
# # # def update_visibility(deduplication_type_value):
|
| 1082 |
+
# # # if deduplication_type_value == "Cross-dataset":
|
| 1083 |
+
# # # return gr.update(visible=True)
|
| 1084 |
+
# # # else:
|
| 1085 |
+
# # # return gr.update(visible=False)
|
| 1086 |
+
|
| 1087 |
+
# # # deduplication_type.change(
|
| 1088 |
+
# # # update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
| 1089 |
+
# # # )
|
| 1090 |
+
|
| 1091 |
+
# # # compute_button.click(
|
| 1092 |
+
# # # fn=perform_deduplication,
|
| 1093 |
+
# # # inputs=[
|
| 1094 |
+
# # # deduplication_type,
|
| 1095 |
+
# # # dataset1_name,
|
| 1096 |
+
# # # dataset1_split,
|
| 1097 |
+
# # # dataset1_text_column,
|
| 1098 |
+
# # # dataset2_name,
|
| 1099 |
+
# # # dataset2_split,
|
| 1100 |
+
# # # dataset2_text_column,
|
| 1101 |
+
# # # threshold,
|
| 1102 |
+
# # # ],
|
| 1103 |
+
# # # outputs=[status_output, result_output],
|
| 1104 |
+
# # # )
|
| 1105 |
+
|
| 1106 |
+
# # # demo.launch()
|