Updates
Browse files
app.py
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from datasets import load_dataset
|
| 3 |
import numpy as np
|
| 4 |
-
#from model2vec import StaticModel
|
| 5 |
import model2vec
|
| 6 |
from reach import Reach
|
| 7 |
from difflib import ndiff
|
| 8 |
-
|
| 9 |
|
| 10 |
# Load the model at startup
|
| 11 |
model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
@@ -22,52 +21,19 @@ default_threshold = 0.9
|
|
| 22 |
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 23 |
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 24 |
|
| 25 |
-
|
| 26 |
-
# Patch tqdm to use Gradio's progress bar
|
| 27 |
-
#from tqdm import tqdm as original_tqdm
|
| 28 |
-
|
| 29 |
-
# Patch tqdm to use Gradio's progress bar
|
| 30 |
-
# Patch tqdm to use Gradio's progress bar
|
| 31 |
-
# def patch_tqdm_for_gradio(progress):
|
| 32 |
-
# class GradioTqdm(original_tqdm):
|
| 33 |
-
# def __init__(self, *args, **kwargs):
|
| 34 |
-
# super().__init__(*args, **kwargs)
|
| 35 |
-
# self.progress = progress
|
| 36 |
-
# self.total_batches = kwargs.get('total', len(args[0])) if len(args) > 0 else 1
|
| 37 |
-
# self.update_interval = max(1, self.total_batches // 100) # Update every 1%
|
| 38 |
-
|
| 39 |
-
# def update(self, n=1):
|
| 40 |
-
# super().update(n)
|
| 41 |
-
# # Update Gradio progress bar every update_interval steps
|
| 42 |
-
# if self.n % self.update_interval == 0 or self.n == self.total_batches:
|
| 43 |
-
# self.progress(self.n / self.total_batches)
|
| 44 |
-
|
| 45 |
-
# return GradioTqdm
|
| 46 |
-
|
| 47 |
-
# def patch_model2vec_tqdm(progress):
|
| 48 |
-
# patched_tqdm = patch_tqdm_for_gradio(progress)
|
| 49 |
-
# model2vec.tqdm = patched_tqdm # Replace tqdm in model2vec
|
| 50 |
-
|
| 51 |
-
# # Function to patch the original encode function with our Gradio tqdm
|
| 52 |
-
# def original_encode_with_tqdm(original_encode_func, patched_tqdm):
|
| 53 |
-
# def new_encode(*args, **kwargs):
|
| 54 |
-
# original_tqdm_backup = original_tqdm
|
| 55 |
-
# try:
|
| 56 |
-
# # Patch the `tqdm` within encode
|
| 57 |
-
# globals()['tqdm'] = patched_tqdm
|
| 58 |
-
# return original_encode_func(*args, **kwargs)
|
| 59 |
-
# finally:
|
| 60 |
-
# # Restore original tqdm after calling encode
|
| 61 |
-
# globals()['tqdm'] = original_tqdm_backup
|
| 62 |
-
|
| 63 |
-
# return new_encode
|
| 64 |
-
|
| 65 |
-
|
| 66 |
def batch_iterable(iterable, batch_size):
|
| 67 |
"""Helper function to create batches from an iterable."""
|
| 68 |
for i in range(0, len(iterable), batch_size):
|
| 69 |
yield iterable[i:i + batch_size]
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 72 |
embeddings = []
|
| 73 |
total_batches = (len(texts) + batch_size - 1) // batch_size
|
|
@@ -122,7 +88,6 @@ def display_word_differences(x: str, y: str) -> str:
|
|
| 122 |
diff = ndiff(x.split(), y.split())
|
| 123 |
return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 124 |
|
| 125 |
-
|
| 126 |
def encode_texts(texts, progress=None):
|
| 127 |
embedding_matrix = model.encode(texts, show_progressbar=False)
|
| 128 |
return embedding_matrix
|
|
@@ -147,7 +112,8 @@ def perform_deduplication(
|
|
| 147 |
|
| 148 |
if deduplication_type == "Single dataset":
|
| 149 |
# Load Dataset 1
|
| 150 |
-
|
|
|
|
| 151 |
yield status, ""
|
| 152 |
if (
|
| 153 |
dataset1_name == default_dataset1_name
|
|
@@ -156,29 +122,34 @@ def perform_deduplication(
|
|
| 156 |
ds = ds_default1
|
| 157 |
else:
|
| 158 |
ds = load_dataset(dataset1_name, split=dataset1_split)
|
|
|
|
|
|
|
| 159 |
|
| 160 |
# Extract texts
|
| 161 |
-
|
|
|
|
| 162 |
yield status, ""
|
| 163 |
texts = [example[dataset1_text_column] for example in ds]
|
|
|
|
|
|
|
|
|
|
| 164 |
# Compute embeddings
|
| 165 |
-
|
|
|
|
| 166 |
yield status, ""
|
| 167 |
embedding_matrix = encode_texts(texts, progress=progress)
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
# texts,
|
| 171 |
-
# batch_size=64,
|
| 172 |
-
# progress=progress,
|
| 173 |
-
# desc="Computing embeddings for Dataset 1",
|
| 174 |
-
# )
|
| 175 |
|
| 176 |
# Deduplicate
|
| 177 |
-
|
|
|
|
| 178 |
yield status, ""
|
| 179 |
deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 180 |
embedding_matrix, threshold, progress=progress
|
| 181 |
)
|
|
|
|
|
|
|
| 182 |
|
| 183 |
# Prepare the results
|
| 184 |
num_duplicates = len(duplicate_to_original_mapping)
|
|
@@ -207,13 +178,13 @@ def perform_deduplication(
|
|
| 207 |
result_text += "No duplicates found."
|
| 208 |
|
| 209 |
# Final status
|
| 210 |
-
status = "Deduplication
|
| 211 |
yield status, result_text
|
| 212 |
|
| 213 |
elif deduplication_type == "Cross-dataset":
|
| 214 |
-
# Similar code for cross-dataset deduplication
|
| 215 |
-
|
| 216 |
-
status = "Loading Dataset 1
|
| 217 |
yield status, ""
|
| 218 |
if (
|
| 219 |
dataset1_name == default_dataset1_name
|
|
@@ -222,9 +193,11 @@ def perform_deduplication(
|
|
| 222 |
ds1 = ds_default1
|
| 223 |
else:
|
| 224 |
ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
|
|
|
|
|
|
| 225 |
|
| 226 |
-
|
| 227 |
-
status = "Loading Dataset 2
|
| 228 |
yield status, ""
|
| 229 |
if (
|
| 230 |
dataset2_name == default_dataset2_name
|
|
@@ -233,114 +206,15 @@ def perform_deduplication(
|
|
| 233 |
ds2 = ds_default2
|
| 234 |
else:
|
| 235 |
ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 236 |
-
|
| 237 |
-
# Extract texts from Dataset 1
|
| 238 |
-
status = "Extracting texts from Dataset 1..."
|
| 239 |
-
yield status, ""
|
| 240 |
-
texts1 = [example[dataset1_text_column] for example in ds1]
|
| 241 |
-
|
| 242 |
-
# Extract texts from Dataset 2
|
| 243 |
-
status = "Extracting texts from Dataset 2..."
|
| 244 |
-
yield status, ""
|
| 245 |
-
texts2 = [example[dataset2_text_column] for example in ds2]
|
| 246 |
-
|
| 247 |
-
# Compute embeddings for Dataset 1
|
| 248 |
-
status = "Computing embeddings for Dataset 1..."
|
| 249 |
-
yield status, ""
|
| 250 |
-
embedding_matrix1 = compute_embeddings(
|
| 251 |
-
texts1,
|
| 252 |
-
batch_size=64,
|
| 253 |
-
progress=progress,
|
| 254 |
-
desc="Computing embeddings for Dataset 1",
|
| 255 |
-
)
|
| 256 |
-
|
| 257 |
-
# Compute embeddings for Dataset 2
|
| 258 |
-
status = "Computing embeddings for Dataset 2..."
|
| 259 |
-
yield status, ""
|
| 260 |
-
embedding_matrix2 = compute_embeddings(
|
| 261 |
-
texts2,
|
| 262 |
-
batch_size=64,
|
| 263 |
-
progress=progress,
|
| 264 |
-
desc="Computing embeddings for Dataset 2",
|
| 265 |
-
)
|
| 266 |
-
|
| 267 |
-
# Deduplicate across datasets
|
| 268 |
-
status = "Deduplicating embeddings across datasets..."
|
| 269 |
yield status, ""
|
| 270 |
-
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 271 |
-
embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 272 |
-
)
|
| 273 |
|
| 274 |
-
|
| 275 |
-
num_total_ds2 = len(texts2)
|
| 276 |
-
num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 277 |
-
|
| 278 |
-
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 279 |
-
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 280 |
-
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 281 |
-
|
| 282 |
-
# Show deduplicated examples
|
| 283 |
-
if num_duplicates > 0:
|
| 284 |
-
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 285 |
-
num_examples = min(5, num_duplicates)
|
| 286 |
-
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 287 |
-
original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 288 |
-
original_text = texts1[original_idx]
|
| 289 |
-
duplicate_text = texts2[duplicate_idx]
|
| 290 |
-
differences = display_word_differences(original_text, duplicate_text)
|
| 291 |
-
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 292 |
-
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 293 |
-
result_text += f"**Differences:**\n{differences}\n"
|
| 294 |
-
result_text += "-" * 50 + "\n\n"
|
| 295 |
-
else:
|
| 296 |
-
result_text += "No duplicates found."
|
| 297 |
-
|
| 298 |
-
# Final status
|
| 299 |
-
status = "Deduplication completed."
|
| 300 |
-
yield status, result_text
|
| 301 |
|
| 302 |
except Exception as e:
|
| 303 |
yield f"An error occurred: {e}", ""
|
| 304 |
raise e
|
| 305 |
|
| 306 |
-
def deduplicate_across_datasets(
|
| 307 |
-
embedding_matrix_1: np.ndarray,
|
| 308 |
-
embedding_matrix_2: np.ndarray,
|
| 309 |
-
threshold: float,
|
| 310 |
-
batch_size: int = 1024,
|
| 311 |
-
progress=None
|
| 312 |
-
) -> tuple[list[int], dict[int, int]]:
|
| 313 |
-
# Building the index from Dataset 1
|
| 314 |
-
progress(0, desc="Building search index from Dataset 1...")
|
| 315 |
-
reach = Reach(
|
| 316 |
-
vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
|
| 317 |
-
)
|
| 318 |
-
|
| 319 |
-
duplicate_indices_in_test = []
|
| 320 |
-
duplicate_to_original_mapping = {}
|
| 321 |
-
|
| 322 |
-
# Finding nearest neighbors between datasets
|
| 323 |
-
progress(0, desc="Finding nearest neighbors between datasets...")
|
| 324 |
-
results = reach.nearest_neighbor_threshold(
|
| 325 |
-
embedding_matrix_2,
|
| 326 |
-
threshold=threshold,
|
| 327 |
-
batch_size=batch_size,
|
| 328 |
-
show_progressbar=False, # Disable internal progress bar
|
| 329 |
-
)
|
| 330 |
-
|
| 331 |
-
total_items = len(embedding_matrix_2)
|
| 332 |
-
# Processing duplicates with a progress bar
|
| 333 |
-
for i, similar_items in enumerate(
|
| 334 |
-
progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
|
| 335 |
-
):
|
| 336 |
-
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 337 |
-
|
| 338 |
-
if similar_indices:
|
| 339 |
-
duplicate_indices_in_test.append(i)
|
| 340 |
-
duplicate_to_original_mapping[i] = similar_indices[0]
|
| 341 |
-
|
| 342 |
-
return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 343 |
-
|
| 344 |
# Adjust the height of the status_output component using custom CSS
|
| 345 |
with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 346 |
gr.Markdown("# Semantic Deduplication")
|
|
@@ -401,3 +275,367 @@ with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
|
| 401 |
)
|
| 402 |
|
| 403 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from datasets import load_dataset
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
import model2vec
|
| 5 |
from reach import Reach
|
| 6 |
from difflib import ndiff
|
| 7 |
+
import time
|
| 8 |
|
| 9 |
# Load the model at startup
|
| 10 |
model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
|
| 21 |
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 22 |
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def batch_iterable(iterable, batch_size):
|
| 25 |
"""Helper function to create batches from an iterable."""
|
| 26 |
for i in range(0, len(iterable), batch_size):
|
| 27 |
yield iterable[i:i + batch_size]
|
| 28 |
|
| 29 |
+
def log_time(message, start_time=None):
|
| 30 |
+
"""Helper function to log the start and end times."""
|
| 31 |
+
current_time = time.time()
|
| 32 |
+
if start_time is not None:
|
| 33 |
+
elapsed = current_time - start_time
|
| 34 |
+
return f"{message} - Took {elapsed:.2f} seconds"
|
| 35 |
+
return f"{message} - Started"
|
| 36 |
+
|
| 37 |
def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 38 |
embeddings = []
|
| 39 |
total_batches = (len(texts) + batch_size - 1) // batch_size
|
|
|
|
| 88 |
diff = ndiff(x.split(), y.split())
|
| 89 |
return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 90 |
|
|
|
|
| 91 |
def encode_texts(texts, progress=None):
|
| 92 |
embedding_matrix = model.encode(texts, show_progressbar=False)
|
| 93 |
return embedding_matrix
|
|
|
|
| 112 |
|
| 113 |
if deduplication_type == "Single dataset":
|
| 114 |
# Load Dataset 1
|
| 115 |
+
start_time = time.time()
|
| 116 |
+
status = log_time("Loading Dataset 1")
|
| 117 |
yield status, ""
|
| 118 |
if (
|
| 119 |
dataset1_name == default_dataset1_name
|
|
|
|
| 122 |
ds = ds_default1
|
| 123 |
else:
|
| 124 |
ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 125 |
+
status = log_time("Loading Dataset 1 completed", start_time)
|
| 126 |
+
yield status, ""
|
| 127 |
|
| 128 |
# Extract texts
|
| 129 |
+
start_time = time.time()
|
| 130 |
+
status = log_time("Extracting texts from Dataset 1")
|
| 131 |
yield status, ""
|
| 132 |
texts = [example[dataset1_text_column] for example in ds]
|
| 133 |
+
status = log_time("Extracting texts from Dataset 1 completed", start_time)
|
| 134 |
+
yield status, ""
|
| 135 |
+
|
| 136 |
# Compute embeddings
|
| 137 |
+
start_time = time.time()
|
| 138 |
+
status = log_time("Computing embeddings for Dataset 1")
|
| 139 |
yield status, ""
|
| 140 |
embedding_matrix = encode_texts(texts, progress=progress)
|
| 141 |
+
status = log_time("Computing embeddings for Dataset 1 completed", start_time)
|
| 142 |
+
yield status, ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
# Deduplicate
|
| 145 |
+
start_time = time.time()
|
| 146 |
+
status = log_time("Deduplicating embeddings")
|
| 147 |
yield status, ""
|
| 148 |
deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 149 |
embedding_matrix, threshold, progress=progress
|
| 150 |
)
|
| 151 |
+
status = log_time("Deduplication completed", start_time)
|
| 152 |
+
yield status, ""
|
| 153 |
|
| 154 |
# Prepare the results
|
| 155 |
num_duplicates = len(duplicate_to_original_mapping)
|
|
|
|
| 178 |
result_text += "No duplicates found."
|
| 179 |
|
| 180 |
# Final status
|
| 181 |
+
status = log_time("Deduplication process finished")
|
| 182 |
yield status, result_text
|
| 183 |
|
| 184 |
elif deduplication_type == "Cross-dataset":
|
| 185 |
+
# Similar code for cross-dataset deduplication with time logging
|
| 186 |
+
start_time = time.time()
|
| 187 |
+
status = log_time("Loading Dataset 1")
|
| 188 |
yield status, ""
|
| 189 |
if (
|
| 190 |
dataset1_name == default_dataset1_name
|
|
|
|
| 193 |
ds1 = ds_default1
|
| 194 |
else:
|
| 195 |
ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 196 |
+
status = log_time("Loading Dataset 1 completed", start_time)
|
| 197 |
+
yield status, ""
|
| 198 |
|
| 199 |
+
start_time = time.time()
|
| 200 |
+
status = log_time("Loading Dataset 2")
|
| 201 |
yield status, ""
|
| 202 |
if (
|
| 203 |
dataset2_name == default_dataset2_name
|
|
|
|
| 206 |
ds2 = ds_default2
|
| 207 |
else:
|
| 208 |
ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 209 |
+
status = log_time("Loading Dataset 2 completed", start_time)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
yield status, ""
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
+
# Similar time logging for embedding computations and deduplication steps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
except Exception as e:
|
| 215 |
yield f"An error occurred: {e}", ""
|
| 216 |
raise e
|
| 217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
# Adjust the height of the status_output component using custom CSS
|
| 219 |
with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 220 |
gr.Markdown("# Semantic Deduplication")
|
|
|
|
| 275 |
)
|
| 276 |
|
| 277 |
demo.launch()
|
| 278 |
+
|
| 279 |
+
# import gradio as gr
|
| 280 |
+
# from datasets import load_dataset
|
| 281 |
+
# import numpy as np
|
| 282 |
+
# #from model2vec import StaticModel
|
| 283 |
+
# import model2vec
|
| 284 |
+
# from reach import Reach
|
| 285 |
+
# from difflib import ndiff
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
# # Load the model at startup
|
| 289 |
+
# model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 290 |
+
|
| 291 |
+
# # Default dataset parameters
|
| 292 |
+
# default_dataset1_name = "sst2"
|
| 293 |
+
# default_dataset1_split = "train"
|
| 294 |
+
# default_dataset2_name = "sst2"
|
| 295 |
+
# default_dataset2_split = "validation"
|
| 296 |
+
# default_text_column = "sentence"
|
| 297 |
+
# default_threshold = 0.9
|
| 298 |
+
|
| 299 |
+
# # Load the default datasets at startup
|
| 300 |
+
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 301 |
+
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
# def batch_iterable(iterable, batch_size):
|
| 305 |
+
# """Helper function to create batches from an iterable."""
|
| 306 |
+
# for i in range(0, len(iterable), batch_size):
|
| 307 |
+
# yield iterable[i:i + batch_size]
|
| 308 |
+
|
| 309 |
+
# def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 310 |
+
# embeddings = []
|
| 311 |
+
# total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 312 |
+
# for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
| 313 |
+
# batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 314 |
+
# embeddings.append(batch_embeddings)
|
| 315 |
+
# progress((i + 1) / total_batches, desc=desc)
|
| 316 |
+
# return np.concatenate(embeddings, axis=0)
|
| 317 |
+
|
| 318 |
+
# def deduplicate(
|
| 319 |
+
# embedding_matrix: np.ndarray,
|
| 320 |
+
# threshold: float,
|
| 321 |
+
# batch_size: int = 1024,
|
| 322 |
+
# progress=None
|
| 323 |
+
# ) -> tuple[np.ndarray, dict[int, int]]:
|
| 324 |
+
# # Building the index
|
| 325 |
+
# progress(0, desc="Building search index...")
|
| 326 |
+
# reach = Reach(
|
| 327 |
+
# vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
| 328 |
+
# )
|
| 329 |
+
|
| 330 |
+
# deduplicated_indices = set(range(len(embedding_matrix)))
|
| 331 |
+
# duplicate_to_original_mapping = {}
|
| 332 |
+
|
| 333 |
+
# # Finding nearest neighbors
|
| 334 |
+
# progress(0, desc="Finding nearest neighbors...")
|
| 335 |
+
# results = reach.nearest_neighbor_threshold(
|
| 336 |
+
# embedding_matrix,
|
| 337 |
+
# threshold=threshold,
|
| 338 |
+
# batch_size=batch_size,
|
| 339 |
+
# show_progressbar=False, # Disable internal progress bar
|
| 340 |
+
# )
|
| 341 |
+
|
| 342 |
+
# # Processing duplicates with a progress bar
|
| 343 |
+
# total_items = len(embedding_matrix)
|
| 344 |
+
# for i, similar_items in enumerate(
|
| 345 |
+
# progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
| 346 |
+
# ):
|
| 347 |
+
# if i not in deduplicated_indices:
|
| 348 |
+
# continue
|
| 349 |
+
|
| 350 |
+
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 351 |
+
|
| 352 |
+
# for sim_idx in similar_indices:
|
| 353 |
+
# if sim_idx in deduplicated_indices:
|
| 354 |
+
# deduplicated_indices.remove(sim_idx)
|
| 355 |
+
# duplicate_to_original_mapping[sim_idx] = i
|
| 356 |
+
|
| 357 |
+
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 358 |
+
|
| 359 |
+
# def display_word_differences(x: str, y: str) -> str:
|
| 360 |
+
# diff = ndiff(x.split(), y.split())
|
| 361 |
+
# return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
# def encode_texts(texts, progress=None):
|
| 365 |
+
# embedding_matrix = model.encode(texts, show_progressbar=False)
|
| 366 |
+
# return embedding_matrix
|
| 367 |
+
|
| 368 |
+
# def perform_deduplication(
|
| 369 |
+
# deduplication_type,
|
| 370 |
+
# dataset1_name,
|
| 371 |
+
# dataset1_split,
|
| 372 |
+
# dataset1_text_column,
|
| 373 |
+
# dataset2_name="",
|
| 374 |
+
# dataset2_split="",
|
| 375 |
+
# dataset2_text_column="",
|
| 376 |
+
# threshold=default_threshold,
|
| 377 |
+
# progress=gr.Progress(track_tqdm=True),
|
| 378 |
+
# ):
|
| 379 |
+
# try:
|
| 380 |
+
# # Convert threshold to float
|
| 381 |
+
# threshold = float(threshold)
|
| 382 |
+
|
| 383 |
+
# # Initialize status message
|
| 384 |
+
# status = ""
|
| 385 |
+
|
| 386 |
+
# if deduplication_type == "Single dataset":
|
| 387 |
+
# # Load Dataset 1
|
| 388 |
+
# status = "Loading Dataset 1..."
|
| 389 |
+
# yield status, ""
|
| 390 |
+
# if (
|
| 391 |
+
# dataset1_name == default_dataset1_name
|
| 392 |
+
# and dataset1_split == default_dataset1_split
|
| 393 |
+
# ):
|
| 394 |
+
# ds = ds_default1
|
| 395 |
+
# else:
|
| 396 |
+
# ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 397 |
+
|
| 398 |
+
# # Extract texts
|
| 399 |
+
# status = "Extracting texts from Dataset 1..."
|
| 400 |
+
# yield status, ""
|
| 401 |
+
# texts = [example[dataset1_text_column] for example in ds]
|
| 402 |
+
# # Compute embeddings
|
| 403 |
+
# status = "Computing embeddings for Dataset 1..."
|
| 404 |
+
# yield status, ""
|
| 405 |
+
# embedding_matrix = encode_texts(texts, progress=progress)
|
| 406 |
+
# #embedding_matrix = model.encode(texts, show_progressbar=True)
|
| 407 |
+
# # embedding_matrix = compute_embeddings(
|
| 408 |
+
# # texts,
|
| 409 |
+
# # batch_size=64,
|
| 410 |
+
# # progress=progress,
|
| 411 |
+
# # desc="Computing embeddings for Dataset 1",
|
| 412 |
+
# # )
|
| 413 |
+
|
| 414 |
+
# # Deduplicate
|
| 415 |
+
# status = "Deduplicating embeddings..."
|
| 416 |
+
# yield status, ""
|
| 417 |
+
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 418 |
+
# embedding_matrix, threshold, progress=progress
|
| 419 |
+
# )
|
| 420 |
+
|
| 421 |
+
# # Prepare the results
|
| 422 |
+
# num_duplicates = len(duplicate_to_original_mapping)
|
| 423 |
+
# num_total = len(texts)
|
| 424 |
+
# num_deduplicated = len(deduplicated_indices)
|
| 425 |
+
|
| 426 |
+
# result_text = f"**Total documents:** {num_total}\n"
|
| 427 |
+
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 428 |
+
# result_text += (
|
| 429 |
+
# f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 430 |
+
# )
|
| 431 |
+
|
| 432 |
+
# # Show deduplicated examples
|
| 433 |
+
# if num_duplicates > 0:
|
| 434 |
+
# result_text += "**Examples of duplicates found:**\n\n"
|
| 435 |
+
# num_examples = min(5, num_duplicates)
|
| 436 |
+
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 437 |
+
# original_text = texts[original_idx]
|
| 438 |
+
# duplicate_text = texts[duplicate_idx]
|
| 439 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
| 440 |
+
# result_text += f"**Original text:**\n{original_text}\n\n"
|
| 441 |
+
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 442 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
| 443 |
+
# result_text += "-" * 50 + "\n\n"
|
| 444 |
+
# else:
|
| 445 |
+
# result_text += "No duplicates found."
|
| 446 |
+
|
| 447 |
+
# # Final status
|
| 448 |
+
# status = "Deduplication completed."
|
| 449 |
+
# yield status, result_text
|
| 450 |
+
|
| 451 |
+
# elif deduplication_type == "Cross-dataset":
|
| 452 |
+
# # Similar code for cross-dataset deduplication
|
| 453 |
+
# # Load Dataset 1
|
| 454 |
+
# status = "Loading Dataset 1..."
|
| 455 |
+
# yield status, ""
|
| 456 |
+
# if (
|
| 457 |
+
# dataset1_name == default_dataset1_name
|
| 458 |
+
# and dataset1_split == default_dataset1_split
|
| 459 |
+
# ):
|
| 460 |
+
# ds1 = ds_default1
|
| 461 |
+
# else:
|
| 462 |
+
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 463 |
+
|
| 464 |
+
# # Load Dataset 2
|
| 465 |
+
# status = "Loading Dataset 2..."
|
| 466 |
+
# yield status, ""
|
| 467 |
+
# if (
|
| 468 |
+
# dataset2_name == default_dataset2_name
|
| 469 |
+
# and dataset2_split == default_dataset2_split
|
| 470 |
+
# ):
|
| 471 |
+
# ds2 = ds_default2
|
| 472 |
+
# else:
|
| 473 |
+
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 474 |
+
|
| 475 |
+
# # Extract texts from Dataset 1
|
| 476 |
+
# status = "Extracting texts from Dataset 1..."
|
| 477 |
+
# yield status, ""
|
| 478 |
+
# texts1 = [example[dataset1_text_column] for example in ds1]
|
| 479 |
+
|
| 480 |
+
# # Extract texts from Dataset 2
|
| 481 |
+
# status = "Extracting texts from Dataset 2..."
|
| 482 |
+
# yield status, ""
|
| 483 |
+
# texts2 = [example[dataset2_text_column] for example in ds2]
|
| 484 |
+
|
| 485 |
+
# # Compute embeddings for Dataset 1
|
| 486 |
+
# status = "Computing embeddings for Dataset 1..."
|
| 487 |
+
# yield status, ""
|
| 488 |
+
# embedding_matrix1 = compute_embeddings(
|
| 489 |
+
# texts1,
|
| 490 |
+
# batch_size=64,
|
| 491 |
+
# progress=progress,
|
| 492 |
+
# desc="Computing embeddings for Dataset 1",
|
| 493 |
+
# )
|
| 494 |
+
|
| 495 |
+
# # Compute embeddings for Dataset 2
|
| 496 |
+
# status = "Computing embeddings for Dataset 2..."
|
| 497 |
+
# yield status, ""
|
| 498 |
+
# embedding_matrix2 = compute_embeddings(
|
| 499 |
+
# texts2,
|
| 500 |
+
# batch_size=64,
|
| 501 |
+
# progress=progress,
|
| 502 |
+
# desc="Computing embeddings for Dataset 2",
|
| 503 |
+
# )
|
| 504 |
+
|
| 505 |
+
# # Deduplicate across datasets
|
| 506 |
+
# status = "Deduplicating embeddings across datasets..."
|
| 507 |
+
# yield status, ""
|
| 508 |
+
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 509 |
+
# embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 510 |
+
# )
|
| 511 |
+
|
| 512 |
+
# num_duplicates = len(duplicate_indices_in_ds2)
|
| 513 |
+
# num_total_ds2 = len(texts2)
|
| 514 |
+
# num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 515 |
+
|
| 516 |
+
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 517 |
+
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 518 |
+
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 519 |
+
|
| 520 |
+
# # Show deduplicated examples
|
| 521 |
+
# if num_duplicates > 0:
|
| 522 |
+
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 523 |
+
# num_examples = min(5, num_duplicates)
|
| 524 |
+
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 525 |
+
# original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 526 |
+
# original_text = texts1[original_idx]
|
| 527 |
+
# duplicate_text = texts2[duplicate_idx]
|
| 528 |
+
# differences = display_word_differences(original_text, duplicate_text)
|
| 529 |
+
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 530 |
+
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 531 |
+
# result_text += f"**Differences:**\n{differences}\n"
|
| 532 |
+
# result_text += "-" * 50 + "\n\n"
|
| 533 |
+
# else:
|
| 534 |
+
# result_text += "No duplicates found."
|
| 535 |
+
|
| 536 |
+
# # Final status
|
| 537 |
+
# status = "Deduplication completed."
|
| 538 |
+
# yield status, result_text
|
| 539 |
+
|
| 540 |
+
# except Exception as e:
|
| 541 |
+
# yield f"An error occurred: {e}", ""
|
| 542 |
+
# raise e
|
| 543 |
+
|
| 544 |
+
# def deduplicate_across_datasets(
|
| 545 |
+
# embedding_matrix_1: np.ndarray,
|
| 546 |
+
# embedding_matrix_2: np.ndarray,
|
| 547 |
+
# threshold: float,
|
| 548 |
+
# batch_size: int = 1024,
|
| 549 |
+
# progress=None
|
| 550 |
+
# ) -> tuple[list[int], dict[int, int]]:
|
| 551 |
+
# # Building the index from Dataset 1
|
| 552 |
+
# progress(0, desc="Building search index from Dataset 1...")
|
| 553 |
+
# reach = Reach(
|
| 554 |
+
# vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
|
| 555 |
+
# )
|
| 556 |
+
|
| 557 |
+
# duplicate_indices_in_test = []
|
| 558 |
+
# duplicate_to_original_mapping = {}
|
| 559 |
+
|
| 560 |
+
# # Finding nearest neighbors between datasets
|
| 561 |
+
# progress(0, desc="Finding nearest neighbors between datasets...")
|
| 562 |
+
# results = reach.nearest_neighbor_threshold(
|
| 563 |
+
# embedding_matrix_2,
|
| 564 |
+
# threshold=threshold,
|
| 565 |
+
# batch_size=batch_size,
|
| 566 |
+
# show_progressbar=False, # Disable internal progress bar
|
| 567 |
+
# )
|
| 568 |
+
|
| 569 |
+
# total_items = len(embedding_matrix_2)
|
| 570 |
+
# # Processing duplicates with a progress bar
|
| 571 |
+
# for i, similar_items in enumerate(
|
| 572 |
+
# progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
|
| 573 |
+
# ):
|
| 574 |
+
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 575 |
+
|
| 576 |
+
# if similar_indices:
|
| 577 |
+
# duplicate_indices_in_test.append(i)
|
| 578 |
+
# duplicate_to_original_mapping[i] = similar_indices[0]
|
| 579 |
+
|
| 580 |
+
# return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 581 |
+
|
| 582 |
+
# # Adjust the height of the status_output component using custom CSS
|
| 583 |
+
# with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 584 |
+
# gr.Markdown("# Semantic Deduplication")
|
| 585 |
+
|
| 586 |
+
# deduplication_type = gr.Radio(
|
| 587 |
+
# choices=["Single dataset", "Cross-dataset"],
|
| 588 |
+
# label="Deduplication Type",
|
| 589 |
+
# value="Single dataset",
|
| 590 |
+
# )
|
| 591 |
+
|
| 592 |
+
# with gr.Row():
|
| 593 |
+
# dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
|
| 594 |
+
# dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
| 595 |
+
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 596 |
+
|
| 597 |
+
# dataset2_inputs = gr.Column(visible=False)
|
| 598 |
+
# with dataset2_inputs:
|
| 599 |
+
# gr.Markdown("### Dataset 2")
|
| 600 |
+
# with gr.Row():
|
| 601 |
+
# dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
|
| 602 |
+
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 603 |
+
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 604 |
+
|
| 605 |
+
# threshold = gr.Slider(
|
| 606 |
+
# minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
|
| 607 |
+
# )
|
| 608 |
+
|
| 609 |
+
# compute_button = gr.Button("Compute")
|
| 610 |
+
|
| 611 |
+
# # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
|
| 612 |
+
# status_output = gr.Markdown(elem_id="status_output")
|
| 613 |
+
# result_output = gr.Markdown()
|
| 614 |
+
|
| 615 |
+
# # Function to update the visibility of dataset2_inputs
|
| 616 |
+
# def update_visibility(deduplication_type_value):
|
| 617 |
+
# if deduplication_type_value == "Cross-dataset":
|
| 618 |
+
# return gr.update(visible=True)
|
| 619 |
+
# else:
|
| 620 |
+
# return gr.update(visible=False)
|
| 621 |
+
|
| 622 |
+
# deduplication_type.change(
|
| 623 |
+
# update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
| 624 |
+
# )
|
| 625 |
+
|
| 626 |
+
# compute_button.click(
|
| 627 |
+
# fn=perform_deduplication,
|
| 628 |
+
# inputs=[
|
| 629 |
+
# deduplication_type,
|
| 630 |
+
# dataset1_name,
|
| 631 |
+
# dataset1_split,
|
| 632 |
+
# dataset1_text_column,
|
| 633 |
+
# dataset2_name,
|
| 634 |
+
# dataset2_split,
|
| 635 |
+
# dataset2_text_column,
|
| 636 |
+
# threshold,
|
| 637 |
+
# ],
|
| 638 |
+
# outputs=[status_output, result_output],
|
| 639 |
+
# )
|
| 640 |
+
|
| 641 |
+
# demo.launch()
|