Updates
Browse files
app.py
CHANGED
|
@@ -4,12 +4,11 @@ import numpy as np
|
|
| 4 |
from model2vec import StaticModel
|
| 5 |
from reach import Reach
|
| 6 |
from difflib import ndiff
|
| 7 |
-
import tqdm
|
| 8 |
|
| 9 |
# Load the model at startup
|
| 10 |
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 11 |
|
| 12 |
-
#
|
| 13 |
default_dataset1_name = "sst2"
|
| 14 |
default_dataset1_split = "train"
|
| 15 |
default_dataset2_name = "sst2"
|
|
@@ -28,29 +27,42 @@ def batch_iterable(iterable, batch_size):
|
|
| 28 |
|
| 29 |
def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 30 |
embeddings = []
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
embeddings.append(batch_embeddings)
|
|
|
|
| 34 |
return np.concatenate(embeddings, axis=0)
|
| 35 |
|
| 36 |
-
def deduplicate(
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
| 43 |
duplicate_to_original_mapping = {}
|
| 44 |
|
|
|
|
|
|
|
| 45 |
results = reach.nearest_neighbor_threshold(
|
| 46 |
embedding_matrix,
|
| 47 |
threshold=threshold,
|
| 48 |
batch_size=batch_size,
|
| 49 |
-
show_progressbar=False
|
| 50 |
)
|
| 51 |
|
|
|
|
| 52 |
total_items = len(embedding_matrix)
|
| 53 |
-
for i, similar_items in enumerate(
|
|
|
|
|
|
|
| 54 |
if i not in deduplicated_indices:
|
| 55 |
continue
|
| 56 |
|
|
@@ -63,35 +75,9 @@ def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int
|
|
| 63 |
|
| 64 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 65 |
|
| 66 |
-
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
| 67 |
-
"""
|
| 68 |
-
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 69 |
-
"""
|
| 70 |
-
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 71 |
-
|
| 72 |
-
duplicate_indices_in_test = []
|
| 73 |
-
duplicate_to_original_mapping = {}
|
| 74 |
-
|
| 75 |
-
results = reach.nearest_neighbor_threshold(
|
| 76 |
-
embedding_matrix_2,
|
| 77 |
-
threshold=threshold,
|
| 78 |
-
batch_size=batch_size,
|
| 79 |
-
show_progressbar=False
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
total_items = len(embedding_matrix_2)
|
| 83 |
-
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
| 84 |
-
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 85 |
-
|
| 86 |
-
if similar_indices:
|
| 87 |
-
duplicate_indices_in_test.append(i)
|
| 88 |
-
duplicate_to_original_mapping[i] = similar_indices[0]
|
| 89 |
-
|
| 90 |
-
return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 91 |
-
|
| 92 |
def display_word_differences(x: str, y: str) -> str:
|
| 93 |
diff = ndiff(x.split(), y.split())
|
| 94 |
-
return " ".join([word for word in diff if word.startswith((
|
| 95 |
|
| 96 |
def perform_deduplication(
|
| 97 |
deduplication_type,
|
|
@@ -102,26 +88,61 @@ def perform_deduplication(
|
|
| 102 |
dataset2_split="",
|
| 103 |
dataset2_text_column="",
|
| 104 |
threshold=default_threshold,
|
| 105 |
-
progress=gr.Progress(track_tqdm=True)
|
| 106 |
):
|
| 107 |
try:
|
|
|
|
| 108 |
threshold = float(threshold)
|
| 109 |
|
|
|
|
|
|
|
|
|
|
| 110 |
if deduplication_type == "Single dataset":
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
num_duplicates = len(duplicate_to_original_mapping)
|
| 118 |
num_total = len(texts)
|
| 119 |
num_deduplicated = len(deduplicated_indices)
|
| 120 |
|
| 121 |
result_text = f"**Total documents:** {num_total}\n"
|
| 122 |
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 123 |
-
result_text +=
|
|
|
|
|
|
|
| 124 |
|
|
|
|
| 125 |
if num_duplicates > 0:
|
| 126 |
result_text += "**Examples of duplicates found:**\n\n"
|
| 127 |
num_examples = min(5, num_duplicates)
|
|
@@ -136,19 +157,70 @@ def perform_deduplication(
|
|
| 136 |
else:
|
| 137 |
result_text += "No duplicates found."
|
| 138 |
|
| 139 |
-
|
|
|
|
|
|
|
| 140 |
|
| 141 |
elif deduplication_type == "Cross-dataset":
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
|
|
|
|
|
|
|
|
|
| 145 |
texts1 = [example[dataset1_text_column] for example in ds1]
|
| 146 |
-
texts2 = [example[dataset2_text_column] for example in ds2]
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
num_duplicates = len(duplicate_indices_in_ds2)
|
| 154 |
num_total_ds2 = len(texts2)
|
|
@@ -158,6 +230,7 @@ def perform_deduplication(
|
|
| 158 |
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 159 |
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 160 |
|
|
|
|
| 161 |
if num_duplicates > 0:
|
| 162 |
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 163 |
num_examples = min(5, num_duplicates)
|
|
@@ -173,19 +246,60 @@ def perform_deduplication(
|
|
| 173 |
else:
|
| 174 |
result_text += "No duplicates found."
|
| 175 |
|
| 176 |
-
|
|
|
|
|
|
|
| 177 |
|
| 178 |
except Exception as e:
|
| 179 |
yield f"An error occurred: {e}", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
gr.Markdown("# Semantic Deduplication")
|
| 184 |
|
| 185 |
deduplication_type = gr.Radio(
|
| 186 |
choices=["Single dataset", "Cross-dataset"],
|
| 187 |
label="Deduplication Type",
|
| 188 |
-
value="Single dataset"
|
| 189 |
)
|
| 190 |
|
| 191 |
with gr.Row():
|
|
@@ -202,17 +316,16 @@ with gr.Blocks(css="#status_output { height: 300px; overflow: auto; } #result_ou
|
|
| 202 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 203 |
|
| 204 |
threshold = gr.Slider(
|
| 205 |
-
minimum=0.0,
|
| 206 |
-
maximum=1.0,
|
| 207 |
-
value=default_threshold,
|
| 208 |
-
label="Similarity Threshold"
|
| 209 |
)
|
| 210 |
|
| 211 |
compute_button = gr.Button("Compute")
|
| 212 |
|
|
|
|
| 213 |
status_output = gr.Markdown(elem_id="status_output")
|
| 214 |
-
result_output = gr.Markdown(
|
| 215 |
|
|
|
|
| 216 |
def update_visibility(deduplication_type_value):
|
| 217 |
if deduplication_type_value == "Cross-dataset":
|
| 218 |
return gr.update(visible=True)
|
|
@@ -220,9 +333,7 @@ with gr.Blocks(css="#status_output { height: 300px; overflow: auto; } #result_ou
|
|
| 220 |
return gr.update(visible=False)
|
| 221 |
|
| 222 |
deduplication_type.change(
|
| 223 |
-
update_visibility,
|
| 224 |
-
inputs=deduplication_type,
|
| 225 |
-
outputs=dataset2_inputs
|
| 226 |
)
|
| 227 |
|
| 228 |
compute_button.click(
|
|
@@ -235,13 +346,14 @@ with gr.Blocks(css="#status_output { height: 300px; overflow: auto; } #result_ou
|
|
| 235 |
dataset2_name,
|
| 236 |
dataset2_split,
|
| 237 |
dataset2_text_column,
|
| 238 |
-
threshold
|
| 239 |
],
|
| 240 |
-
outputs=[status_output, result_output]
|
| 241 |
)
|
| 242 |
|
| 243 |
demo.launch()
|
| 244 |
|
|
|
|
| 245 |
# import gradio as gr
|
| 246 |
# from datasets import load_dataset
|
| 247 |
# import numpy as np
|
|
@@ -281,23 +393,18 @@ demo.launch()
|
|
| 281 |
# """
|
| 282 |
# Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 283 |
# """
|
| 284 |
-
# # Building the index
|
| 285 |
-
# progress(0, desc="Building search index...")
|
| 286 |
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 287 |
|
| 288 |
# deduplicated_indices = set(range(len(embedding_matrix)))
|
| 289 |
# duplicate_to_original_mapping = {}
|
| 290 |
|
| 291 |
-
# # Finding nearest neighbors
|
| 292 |
-
# progress(0, desc="Finding nearest neighbors...")
|
| 293 |
# results = reach.nearest_neighbor_threshold(
|
| 294 |
# embedding_matrix,
|
| 295 |
# threshold=threshold,
|
| 296 |
# batch_size=batch_size,
|
| 297 |
-
# show_progressbar=False
|
| 298 |
# )
|
| 299 |
|
| 300 |
-
# # Processing duplicates with a progress bar
|
| 301 |
# total_items = len(embedding_matrix)
|
| 302 |
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 303 |
# if i not in deduplicated_indices:
|
|
@@ -316,24 +423,19 @@ demo.launch()
|
|
| 316 |
# """
|
| 317 |
# Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 318 |
# """
|
| 319 |
-
# # Building the index from Dataset 1
|
| 320 |
-
# progress(0, desc="Building search index from Dataset 1...")
|
| 321 |
# reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 322 |
|
| 323 |
# duplicate_indices_in_test = []
|
| 324 |
# duplicate_to_original_mapping = {}
|
| 325 |
|
| 326 |
-
# # Finding nearest neighbors between datasets
|
| 327 |
-
# progress(0, desc="Finding nearest neighbors between datasets...")
|
| 328 |
# results = reach.nearest_neighbor_threshold(
|
| 329 |
# embedding_matrix_2,
|
| 330 |
# threshold=threshold,
|
| 331 |
# batch_size=batch_size,
|
| 332 |
-
# show_progressbar=False
|
| 333 |
# )
|
| 334 |
|
| 335 |
# total_items = len(embedding_matrix_2)
|
| 336 |
-
# # Processing duplicates with a progress bar
|
| 337 |
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
| 338 |
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 339 |
|
|
@@ -359,39 +461,15 @@ demo.launch()
|
|
| 359 |
# progress=gr.Progress(track_tqdm=True)
|
| 360 |
# ):
|
| 361 |
# try:
|
| 362 |
-
# # Convert threshold to float
|
| 363 |
# threshold = float(threshold)
|
| 364 |
|
| 365 |
-
# # Initialize status message
|
| 366 |
-
# status = ""
|
| 367 |
-
|
| 368 |
# if deduplication_type == "Single dataset":
|
| 369 |
-
#
|
| 370 |
-
# status = "Loading Dataset 1..."
|
| 371 |
-
# yield status, ""
|
| 372 |
-
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 373 |
-
# ds = ds_default1
|
| 374 |
-
# else:
|
| 375 |
-
# ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 376 |
-
|
| 377 |
-
# # Extract texts
|
| 378 |
-
# status = "Extracting texts from Dataset 1..."
|
| 379 |
-
# yield status, ""
|
| 380 |
# texts = [example[dataset1_text_column] for example in ds]
|
| 381 |
|
| 382 |
-
# # Compute embeddings
|
| 383 |
-
# status = "Computing embeddings for Dataset 1..."
|
| 384 |
-
# yield status, ""
|
| 385 |
# embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
|
|
|
| 386 |
|
| 387 |
-
# # Deduplicate
|
| 388 |
-
# status = "Deduplicating embeddings..."
|
| 389 |
-
# yield status, ""
|
| 390 |
-
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 391 |
-
# embedding_matrix, threshold, progress=progress
|
| 392 |
-
# )
|
| 393 |
-
|
| 394 |
-
# # Prepare the results
|
| 395 |
# num_duplicates = len(duplicate_to_original_mapping)
|
| 396 |
# num_total = len(texts)
|
| 397 |
# num_deduplicated = len(deduplicated_indices)
|
|
@@ -400,7 +478,6 @@ demo.launch()
|
|
| 400 |
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 401 |
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 402 |
|
| 403 |
-
# # Show deduplicated examples
|
| 404 |
# if num_duplicates > 0:
|
| 405 |
# result_text += "**Examples of duplicates found:**\n\n"
|
| 406 |
# num_examples = min(5, num_duplicates)
|
|
@@ -415,53 +492,19 @@ demo.launch()
|
|
| 415 |
# else:
|
| 416 |
# result_text += "No duplicates found."
|
| 417 |
|
| 418 |
-
#
|
| 419 |
-
# status = "Deduplication completed."
|
| 420 |
-
# yield status, result_text
|
| 421 |
|
| 422 |
# elif deduplication_type == "Cross-dataset":
|
| 423 |
-
#
|
| 424 |
-
#
|
| 425 |
-
# yield status, ""
|
| 426 |
-
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 427 |
-
# ds1 = ds_default1
|
| 428 |
-
# else:
|
| 429 |
-
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 430 |
-
|
| 431 |
-
# # Load Dataset 2
|
| 432 |
-
# status = "Loading Dataset 2..."
|
| 433 |
-
# yield status, ""
|
| 434 |
-
# if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 435 |
-
# ds2 = ds_default2
|
| 436 |
-
# else:
|
| 437 |
-
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 438 |
|
| 439 |
-
# # Extract texts from Dataset 1
|
| 440 |
-
# status = "Extracting texts from Dataset 1..."
|
| 441 |
-
# yield status, ""
|
| 442 |
# texts1 = [example[dataset1_text_column] for example in ds1]
|
| 443 |
-
|
| 444 |
-
# # Extract texts from Dataset 2
|
| 445 |
-
# status = "Extracting texts from Dataset 2..."
|
| 446 |
-
# yield status, ""
|
| 447 |
# texts2 = [example[dataset2_text_column] for example in ds2]
|
| 448 |
|
| 449 |
-
# # Compute embeddings for Dataset 1
|
| 450 |
-
# status = "Computing embeddings for Dataset 1..."
|
| 451 |
-
# yield status, ""
|
| 452 |
# embedding_matrix1 = compute_embeddings(texts1, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
| 453 |
-
|
| 454 |
-
# # Compute embeddings for Dataset 2
|
| 455 |
-
# status = "Computing embeddings for Dataset 2..."
|
| 456 |
-
# yield status, ""
|
| 457 |
# embedding_matrix2 = compute_embeddings(texts2, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 2")
|
| 458 |
|
| 459 |
-
#
|
| 460 |
-
# status = "Deduplicating embeddings across datasets..."
|
| 461 |
-
# yield status, ""
|
| 462 |
-
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 463 |
-
# embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 464 |
-
# )
|
| 465 |
|
| 466 |
# num_duplicates = len(duplicate_indices_in_ds2)
|
| 467 |
# num_total_ds2 = len(texts2)
|
|
@@ -471,7 +514,6 @@ demo.launch()
|
|
| 471 |
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 472 |
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 473 |
|
| 474 |
-
# # Show deduplicated examples
|
| 475 |
# if num_duplicates > 0:
|
| 476 |
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 477 |
# num_examples = min(5, num_duplicates)
|
|
@@ -487,15 +529,13 @@ demo.launch()
|
|
| 487 |
# else:
|
| 488 |
# result_text += "No duplicates found."
|
| 489 |
|
| 490 |
-
#
|
| 491 |
-
# status = "Deduplication completed."
|
| 492 |
-
# yield status, result_text
|
| 493 |
|
| 494 |
# except Exception as e:
|
| 495 |
# yield f"An error occurred: {e}", ""
|
| 496 |
-
# raise e
|
| 497 |
|
| 498 |
-
#
|
|
|
|
| 499 |
# gr.Markdown("# Semantic Deduplication")
|
| 500 |
|
| 501 |
# deduplication_type = gr.Radio(
|
|
@@ -526,10 +566,9 @@ demo.launch()
|
|
| 526 |
|
| 527 |
# compute_button = gr.Button("Compute")
|
| 528 |
|
| 529 |
-
# status_output = gr.Markdown()
|
| 530 |
-
# result_output = gr.Markdown()
|
| 531 |
|
| 532 |
-
# # Function to update the visibility of dataset2_inputs
|
| 533 |
# def update_visibility(deduplication_type_value):
|
| 534 |
# if deduplication_type_value == "Cross-dataset":
|
| 535 |
# return gr.update(visible=True)
|
|
@@ -559,178 +598,322 @@ demo.launch()
|
|
| 559 |
|
| 560 |
# demo.launch()
|
| 561 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
|
| 563 |
-
#
|
| 564 |
-
#
|
| 565 |
-
# import numpy as np
|
| 566 |
-
# import model2vec
|
| 567 |
-
# from reach import Reach
|
| 568 |
-
# from difflib import ndiff
|
| 569 |
|
| 570 |
-
# #
|
| 571 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
|
| 573 |
-
# #
|
| 574 |
-
# default_dataset1_name =
|
| 575 |
-
#
|
| 576 |
-
# default_dataset2_name = "sst2"
|
| 577 |
-
# default_dataset2_split = "validation"
|
| 578 |
-
# default_text_column = "sentence"
|
| 579 |
-
# default_threshold = 0.9
|
| 580 |
|
| 581 |
-
# #
|
| 582 |
-
#
|
| 583 |
-
#
|
|
|
|
| 584 |
|
| 585 |
-
# def
|
| 586 |
-
#
|
| 587 |
-
# for
|
| 588 |
-
#
|
|
|
|
|
|
|
| 589 |
|
| 590 |
-
# def
|
| 591 |
-
#
|
| 592 |
-
#
|
| 593 |
-
#
|
| 594 |
-
#
|
| 595 |
-
#
|
| 596 |
-
#
|
| 597 |
-
# return np.concatenate(embeddings, axis=0)
|
| 598 |
|
| 599 |
-
#
|
| 600 |
-
#
|
| 601 |
-
# threshold: float,
|
| 602 |
-
# batch_size: int = 1024,
|
| 603 |
-
# progress=None
|
| 604 |
-
# ) -> tuple[np.ndarray, dict[int, int]]:
|
| 605 |
-
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 606 |
|
| 607 |
-
#
|
| 608 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 609 |
|
| 610 |
-
#
|
| 611 |
-
#
|
| 612 |
-
#
|
| 613 |
-
#
|
| 614 |
-
#
|
| 615 |
-
# )
|
| 616 |
|
| 617 |
-
#
|
| 618 |
-
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 619 |
-
# if i not in deduplicated_indices:
|
| 620 |
-
# continue
|
| 621 |
|
| 622 |
-
#
|
| 623 |
-
#
|
| 624 |
-
#
|
| 625 |
-
#
|
| 626 |
-
# duplicate_to_original_mapping[sim_idx] = i
|
| 627 |
|
| 628 |
-
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 629 |
|
| 630 |
-
# def
|
| 631 |
-
#
|
| 632 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 633 |
|
| 634 |
-
#
|
| 635 |
-
#
|
| 636 |
-
# dataset1_name,
|
| 637 |
-
# dataset1_split,
|
| 638 |
-
# dataset1_text_column,
|
| 639 |
-
# dataset2_name="",
|
| 640 |
-
# dataset2_split="",
|
| 641 |
-
# dataset2_text_column="",
|
| 642 |
-
# threshold=default_threshold,
|
| 643 |
-
# progress=gr.Progress(track_tqdm=True),
|
| 644 |
-
# ):
|
| 645 |
-
# try:
|
| 646 |
-
# threshold = float(threshold)
|
| 647 |
|
| 648 |
-
#
|
| 649 |
-
#
|
| 650 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 651 |
|
| 652 |
-
#
|
| 653 |
-
#
|
|
|
|
|
|
|
| 654 |
|
| 655 |
-
#
|
| 656 |
-
#
|
| 657 |
-
#
|
| 658 |
|
| 659 |
-
#
|
| 660 |
-
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 661 |
-
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 662 |
|
| 663 |
-
#
|
| 664 |
-
#
|
| 665 |
-
#
|
| 666 |
-
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 667 |
-
# original_text = texts[original_idx]
|
| 668 |
-
# duplicate_text = texts[duplicate_idx]
|
| 669 |
-
# differences = display_word_differences(original_text, duplicate_text)
|
| 670 |
-
# result_text += f"**Original text:**\n{original_text}\n\n"
|
| 671 |
-
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 672 |
-
# result_text += f"**Differences:**\n{differences}\n"
|
| 673 |
-
# result_text += "-" * 50 + "\n\n"
|
| 674 |
-
# else:
|
| 675 |
-
# result_text += "No duplicates found."
|
| 676 |
|
| 677 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 678 |
|
| 679 |
-
#
|
| 680 |
-
#
|
| 681 |
|
| 682 |
-
# #
|
| 683 |
-
#
|
| 684 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 685 |
|
| 686 |
-
#
|
| 687 |
-
#
|
| 688 |
-
#
|
| 689 |
-
#
|
| 690 |
-
# )
|
| 691 |
|
| 692 |
-
#
|
| 693 |
-
#
|
| 694 |
-
#
|
| 695 |
-
#
|
| 696 |
|
| 697 |
-
#
|
| 698 |
-
#
|
| 699 |
-
#
|
| 700 |
-
#
|
| 701 |
-
#
|
| 702 |
-
#
|
| 703 |
-
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 704 |
|
| 705 |
-
#
|
|
|
|
|
|
|
|
|
|
| 706 |
|
| 707 |
-
#
|
|
|
|
|
|
|
| 708 |
|
| 709 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 710 |
|
| 711 |
-
#
|
| 712 |
-
#
|
|
|
|
| 713 |
|
| 714 |
-
#
|
| 715 |
-
#
|
| 716 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 717 |
|
| 718 |
-
#
|
| 719 |
-
#
|
| 720 |
-
#
|
| 721 |
-
#
|
| 722 |
-
#
|
| 723 |
-
#
|
| 724 |
-
#
|
| 725 |
-
|
| 726 |
-
#
|
| 727 |
-
#
|
| 728 |
-
#
|
| 729 |
-
#
|
| 730 |
-
|
| 731 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 732 |
|
| 733 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 734 |
|
| 735 |
|
| 736 |
# # import gradio as gr
|
|
@@ -739,7 +922,6 @@ demo.launch()
|
|
| 739 |
# # import model2vec
|
| 740 |
# # from reach import Reach
|
| 741 |
# # from difflib import ndiff
|
| 742 |
-
# # import time
|
| 743 |
|
| 744 |
# # # Load the model at startup
|
| 745 |
# # model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
@@ -761,19 +943,7 @@ demo.launch()
|
|
| 761 |
# # for i in range(0, len(iterable), batch_size):
|
| 762 |
# # yield iterable[i:i + batch_size]
|
| 763 |
|
| 764 |
-
# # def
|
| 765 |
-
# # """Helper function to log the start and end times."""
|
| 766 |
-
# # current_time = time.time()
|
| 767 |
-
# # if start_time is not None:
|
| 768 |
-
# # elapsed = current_time - start_time
|
| 769 |
-
# # log_message = f"{message} - Took {elapsed:.2f} seconds"
|
| 770 |
-
# # else:
|
| 771 |
-
# # log_message = f"{message} - Started"
|
| 772 |
-
|
| 773 |
-
# # if logs is not None:
|
| 774 |
-
# # logs.append(log_message)
|
| 775 |
-
|
| 776 |
-
# # def compute_embeddings(texts, batch_size, progress, logs, desc="Computing embeddings"):
|
| 777 |
# # embeddings = []
|
| 778 |
# # total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 779 |
# # for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
|
@@ -786,38 +956,26 @@ demo.launch()
|
|
| 786 |
# # embedding_matrix: np.ndarray,
|
| 787 |
# # threshold: float,
|
| 788 |
# # batch_size: int = 1024,
|
| 789 |
-
# # progress=None
|
| 790 |
-
# # logs=None
|
| 791 |
# # ) -> tuple[np.ndarray, dict[int, int]]:
|
| 792 |
-
# #
|
| 793 |
-
# # log_time("Building search index", logs=logs)
|
| 794 |
-
# # reach = Reach(
|
| 795 |
-
# # vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
| 796 |
-
# # )
|
| 797 |
|
| 798 |
# # deduplicated_indices = set(range(len(embedding_matrix)))
|
| 799 |
# # duplicate_to_original_mapping = {}
|
| 800 |
|
| 801 |
-
# # # Finding nearest neighbors
|
| 802 |
-
# # log_time("Finding nearest neighbors", logs=logs)
|
| 803 |
# # results = reach.nearest_neighbor_threshold(
|
| 804 |
# # embedding_matrix,
|
| 805 |
# # threshold=threshold,
|
| 806 |
# # batch_size=batch_size,
|
| 807 |
-
# # show_progressbar=False,
|
| 808 |
# # )
|
| 809 |
|
| 810 |
-
# # # Processing duplicates with a progress bar
|
| 811 |
# # total_items = len(embedding_matrix)
|
| 812 |
-
# #
|
| 813 |
-
# # for i, similar_items in enumerate(
|
| 814 |
-
# # progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
| 815 |
-
# # ):
|
| 816 |
# # if i not in deduplicated_indices:
|
| 817 |
# # continue
|
| 818 |
|
| 819 |
# # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 820 |
-
|
| 821 |
# # for sim_idx in similar_indices:
|
| 822 |
# # if sim_idx in deduplicated_indices:
|
| 823 |
# # deduplicated_indices.remove(sim_idx)
|
|
@@ -829,11 +987,6 @@ demo.launch()
|
|
| 829 |
# # diff = ndiff(x.split(), y.split())
|
| 830 |
# # return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 831 |
|
| 832 |
-
# # def encode_texts(texts, progress=None, logs=None):
|
| 833 |
-
# # embedding_matrix = model.encode(texts, show_progressbar=False)
|
| 834 |
-
# # log_time("Encoding texts completed", logs=logs)
|
| 835 |
-
# # return embedding_matrix
|
| 836 |
-
|
| 837 |
# # def perform_deduplication(
|
| 838 |
# # deduplication_type,
|
| 839 |
# # dataset1_name,
|
|
@@ -845,59 +998,24 @@ demo.launch()
|
|
| 845 |
# # threshold=default_threshold,
|
| 846 |
# # progress=gr.Progress(track_tqdm=True),
|
| 847 |
# # ):
|
| 848 |
-
# # logs = [] # To store log messages
|
| 849 |
# # try:
|
| 850 |
-
# # # Convert threshold to float
|
| 851 |
# # threshold = float(threshold)
|
| 852 |
|
| 853 |
-
# # # Initialize status message
|
| 854 |
-
# # log_time("Deduplication started", logs=logs)
|
| 855 |
-
|
| 856 |
# # if deduplication_type == "Single dataset":
|
| 857 |
-
# #
|
| 858 |
-
# # start_time = time.time()
|
| 859 |
-
# # log_time("Loading Dataset 1", logs=logs)
|
| 860 |
-
# # if (
|
| 861 |
-
# # dataset1_name == default_dataset1_name
|
| 862 |
-
# # and dataset1_split == default_dataset1_split
|
| 863 |
-
# # ):
|
| 864 |
-
# # ds = ds_default1
|
| 865 |
-
# # else:
|
| 866 |
-
# # ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 867 |
-
# # log_time("Loading Dataset 1 completed", start_time=start_time, logs=logs)
|
| 868 |
-
|
| 869 |
-
# # # Extract texts
|
| 870 |
-
# # start_time = time.time()
|
| 871 |
-
# # log_time("Extracting texts from Dataset 1", logs=logs)
|
| 872 |
# # texts = [example[dataset1_text_column] for example in ds]
|
| 873 |
-
# # log_time("Extracting texts from Dataset 1 completed", start_time=start_time, logs=logs)
|
| 874 |
-
|
| 875 |
-
# # # Compute embeddings
|
| 876 |
-
# # start_time = time.time()
|
| 877 |
-
# # log_time("Computing embeddings for Dataset 1", logs=logs)
|
| 878 |
-
# # embedding_matrix = encode_texts(texts, progress=progress, logs=logs)
|
| 879 |
-
# # log_time("Computing embeddings for Dataset 1 completed", start_time=start_time, logs=logs)
|
| 880 |
|
| 881 |
-
# #
|
| 882 |
-
# #
|
| 883 |
-
# # log_time("Deduplicating embeddings", logs=logs)
|
| 884 |
-
# # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 885 |
-
# # embedding_matrix, threshold, progress=progress, logs=logs
|
| 886 |
-
# # )
|
| 887 |
-
# # log_time("Deduplication completed", start_time=start_time, logs=logs)
|
| 888 |
|
| 889 |
-
# # # Prepare the results
|
| 890 |
# # num_duplicates = len(duplicate_to_original_mapping)
|
| 891 |
# # num_total = len(texts)
|
| 892 |
# # num_deduplicated = len(deduplicated_indices)
|
| 893 |
|
| 894 |
# # result_text = f"**Total documents:** {num_total}\n"
|
| 895 |
# # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 896 |
-
# # result_text +=
|
| 897 |
-
# # f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 898 |
-
# # )
|
| 899 |
|
| 900 |
-
# # # Show deduplicated examples
|
| 901 |
# # if num_duplicates > 0:
|
| 902 |
# # result_text += "**Examples of duplicates found:**\n\n"
|
| 903 |
# # num_examples = min(5, num_duplicates)
|
|
@@ -912,16 +1030,12 @@ demo.launch()
|
|
| 912 |
# # else:
|
| 913 |
# # result_text += "No duplicates found."
|
| 914 |
|
| 915 |
-
# #
|
| 916 |
-
# # full_log = "\n".join(logs) # Combine all logs into one output
|
| 917 |
-
# # yield full_log, result_text
|
| 918 |
|
| 919 |
# # except Exception as e:
|
| 920 |
-
# #
|
| 921 |
-
# # yield f"An error occurred: {e}", ""
|
| 922 |
-
# # raise e
|
| 923 |
|
| 924 |
-
# # #
|
| 925 |
# # with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 926 |
# # gr.Markdown("# Semantic Deduplication")
|
| 927 |
|
|
@@ -944,22 +1058,14 @@ demo.launch()
|
|
| 944 |
# # dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 945 |
# # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 946 |
|
| 947 |
-
# # threshold = gr.Slider(
|
| 948 |
-
# # minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
|
| 949 |
-
# # )
|
| 950 |
|
| 951 |
# # compute_button = gr.Button("Compute")
|
| 952 |
|
| 953 |
-
# # # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
|
| 954 |
-
# # status_output = gr.Markdown(elem_id="status_output")
|
| 955 |
# # result_output = gr.Markdown()
|
| 956 |
|
| 957 |
-
# # # Function to update the visibility of dataset2_inputs
|
| 958 |
# # def update_visibility(deduplication_type_value):
|
| 959 |
-
# # if deduplication_type_value == "Cross-dataset"
|
| 960 |
-
# # return gr.update(visible=True)
|
| 961 |
-
# # else:
|
| 962 |
-
# # return gr.update(visible=False)
|
| 963 |
|
| 964 |
# # deduplication_type.change(
|
| 965 |
# # update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
|
@@ -977,21 +1083,19 @@ demo.launch()
|
|
| 977 |
# # dataset2_text_column,
|
| 978 |
# # threshold,
|
| 979 |
# # ],
|
| 980 |
-
# # outputs=[
|
| 981 |
# # )
|
| 982 |
|
| 983 |
# # demo.launch()
|
| 984 |
|
| 985 |
|
| 986 |
-
|
| 987 |
# # # import gradio as gr
|
| 988 |
# # # from datasets import load_dataset
|
| 989 |
# # # import numpy as np
|
| 990 |
-
# # # #from model2vec import StaticModel
|
| 991 |
# # # import model2vec
|
| 992 |
# # # from reach import Reach
|
| 993 |
# # # from difflib import ndiff
|
| 994 |
-
|
| 995 |
|
| 996 |
# # # # Load the model at startup
|
| 997 |
# # # model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
@@ -1008,13 +1112,24 @@ demo.launch()
|
|
| 1008 |
# # # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 1009 |
# # # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 1010 |
|
| 1011 |
-
|
| 1012 |
# # # def batch_iterable(iterable, batch_size):
|
| 1013 |
# # # """Helper function to create batches from an iterable."""
|
| 1014 |
# # # for i in range(0, len(iterable), batch_size):
|
| 1015 |
# # # yield iterable[i:i + batch_size]
|
| 1016 |
|
| 1017 |
-
# # # def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1018 |
# # # embeddings = []
|
| 1019 |
# # # total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 1020 |
# # # for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
|
@@ -1027,10 +1142,11 @@ demo.launch()
|
|
| 1027 |
# # # embedding_matrix: np.ndarray,
|
| 1028 |
# # # threshold: float,
|
| 1029 |
# # # batch_size: int = 1024,
|
| 1030 |
-
# # # progress=None
|
|
|
|
| 1031 |
# # # ) -> tuple[np.ndarray, dict[int, int]]:
|
| 1032 |
# # # # Building the index
|
| 1033 |
-
# # #
|
| 1034 |
# # # reach = Reach(
|
| 1035 |
# # # vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
| 1036 |
# # # )
|
|
@@ -1039,7 +1155,7 @@ demo.launch()
|
|
| 1039 |
# # # duplicate_to_original_mapping = {}
|
| 1040 |
|
| 1041 |
# # # # Finding nearest neighbors
|
| 1042 |
-
# # #
|
| 1043 |
# # # results = reach.nearest_neighbor_threshold(
|
| 1044 |
# # # embedding_matrix,
|
| 1045 |
# # # threshold=threshold,
|
|
@@ -1049,6 +1165,7 @@ demo.launch()
|
|
| 1049 |
|
| 1050 |
# # # # Processing duplicates with a progress bar
|
| 1051 |
# # # total_items = len(embedding_matrix)
|
|
|
|
| 1052 |
# # # for i, similar_items in enumerate(
|
| 1053 |
# # # progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
| 1054 |
# # # ):
|
|
@@ -1068,9 +1185,9 @@ demo.launch()
|
|
| 1068 |
# # # diff = ndiff(x.split(), y.split())
|
| 1069 |
# # # return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 1070 |
|
| 1071 |
-
|
| 1072 |
-
# # # def encode_texts(texts, progress=None):
|
| 1073 |
# # # embedding_matrix = model.encode(texts, show_progressbar=False)
|
|
|
|
| 1074 |
# # # return embedding_matrix
|
| 1075 |
|
| 1076 |
# # # def perform_deduplication(
|
|
@@ -1084,17 +1201,18 @@ demo.launch()
|
|
| 1084 |
# # # threshold=default_threshold,
|
| 1085 |
# # # progress=gr.Progress(track_tqdm=True),
|
| 1086 |
# # # ):
|
|
|
|
| 1087 |
# # # try:
|
| 1088 |
# # # # Convert threshold to float
|
| 1089 |
# # # threshold = float(threshold)
|
| 1090 |
|
| 1091 |
# # # # Initialize status message
|
| 1092 |
-
# # #
|
| 1093 |
|
| 1094 |
# # # if deduplication_type == "Single dataset":
|
| 1095 |
# # # # Load Dataset 1
|
| 1096 |
-
# # #
|
| 1097 |
-
# # #
|
| 1098 |
# # # if (
|
| 1099 |
# # # dataset1_name == default_dataset1_name
|
| 1100 |
# # # and dataset1_split == default_dataset1_split
|
|
@@ -1102,29 +1220,27 @@ demo.launch()
|
|
| 1102 |
# # # ds = ds_default1
|
| 1103 |
# # # else:
|
| 1104 |
# # # ds = load_dataset(dataset1_name, split=dataset1_split)
|
|
|
|
| 1105 |
|
| 1106 |
# # # # Extract texts
|
| 1107 |
-
# # #
|
| 1108 |
-
# # #
|
| 1109 |
# # # texts = [example[dataset1_text_column] for example in ds]
|
|
|
|
|
|
|
| 1110 |
# # # # Compute embeddings
|
| 1111 |
-
# # #
|
| 1112 |
-
# # #
|
| 1113 |
-
# # # embedding_matrix = encode_texts(texts, progress=progress)
|
| 1114 |
-
# # #
|
| 1115 |
-
# # # # embedding_matrix = compute_embeddings(
|
| 1116 |
-
# # # # texts,
|
| 1117 |
-
# # # # batch_size=64,
|
| 1118 |
-
# # # # progress=progress,
|
| 1119 |
-
# # # # desc="Computing embeddings for Dataset 1",
|
| 1120 |
-
# # # # )
|
| 1121 |
|
| 1122 |
# # # # Deduplicate
|
| 1123 |
-
# # #
|
| 1124 |
-
# # #
|
| 1125 |
# # # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 1126 |
-
# # # embedding_matrix, threshold, progress=progress
|
| 1127 |
# # # )
|
|
|
|
| 1128 |
|
| 1129 |
# # # # Prepare the results
|
| 1130 |
# # # num_duplicates = len(duplicate_to_original_mapping)
|
|
@@ -1152,141 +1268,15 @@ demo.launch()
|
|
| 1152 |
# # # else:
|
| 1153 |
# # # result_text += "No duplicates found."
|
| 1154 |
|
| 1155 |
-
# # #
|
| 1156 |
-
# # #
|
| 1157 |
-
# # # yield
|
| 1158 |
-
|
| 1159 |
-
# # # elif deduplication_type == "Cross-dataset":
|
| 1160 |
-
# # # # Similar code for cross-dataset deduplication
|
| 1161 |
-
# # # # Load Dataset 1
|
| 1162 |
-
# # # status = "Loading Dataset 1..."
|
| 1163 |
-
# # # yield status, ""
|
| 1164 |
-
# # # if (
|
| 1165 |
-
# # # dataset1_name == default_dataset1_name
|
| 1166 |
-
# # # and dataset1_split == default_dataset1_split
|
| 1167 |
-
# # # ):
|
| 1168 |
-
# # # ds1 = ds_default1
|
| 1169 |
-
# # # else:
|
| 1170 |
-
# # # ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 1171 |
-
|
| 1172 |
-
# # # # Load Dataset 2
|
| 1173 |
-
# # # status = "Loading Dataset 2..."
|
| 1174 |
-
# # # yield status, ""
|
| 1175 |
-
# # # if (
|
| 1176 |
-
# # # dataset2_name == default_dataset2_name
|
| 1177 |
-
# # # and dataset2_split == default_dataset2_split
|
| 1178 |
-
# # # ):
|
| 1179 |
-
# # # ds2 = ds_default2
|
| 1180 |
-
# # # else:
|
| 1181 |
-
# # # ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 1182 |
-
|
| 1183 |
-
# # # # Extract texts from Dataset 1
|
| 1184 |
-
# # # status = "Extracting texts from Dataset 1..."
|
| 1185 |
-
# # # yield status, ""
|
| 1186 |
-
# # # texts1 = [example[dataset1_text_column] for example in ds1]
|
| 1187 |
-
|
| 1188 |
-
# # # # Extract texts from Dataset 2
|
| 1189 |
-
# # # status = "Extracting texts from Dataset 2..."
|
| 1190 |
-
# # # yield status, ""
|
| 1191 |
-
# # # texts2 = [example[dataset2_text_column] for example in ds2]
|
| 1192 |
-
|
| 1193 |
-
# # # # Compute embeddings for Dataset 1
|
| 1194 |
-
# # # status = "Computing embeddings for Dataset 1..."
|
| 1195 |
-
# # # yield status, ""
|
| 1196 |
-
# # # embedding_matrix1 = compute_embeddings(
|
| 1197 |
-
# # # texts1,
|
| 1198 |
-
# # # batch_size=64,
|
| 1199 |
-
# # # progress=progress,
|
| 1200 |
-
# # # desc="Computing embeddings for Dataset 1",
|
| 1201 |
-
# # # )
|
| 1202 |
-
|
| 1203 |
-
# # # # Compute embeddings for Dataset 2
|
| 1204 |
-
# # # status = "Computing embeddings for Dataset 2..."
|
| 1205 |
-
# # # yield status, ""
|
| 1206 |
-
# # # embedding_matrix2 = compute_embeddings(
|
| 1207 |
-
# # # texts2,
|
| 1208 |
-
# # # batch_size=64,
|
| 1209 |
-
# # # progress=progress,
|
| 1210 |
-
# # # desc="Computing embeddings for Dataset 2",
|
| 1211 |
-
# # # )
|
| 1212 |
-
|
| 1213 |
-
# # # # Deduplicate across datasets
|
| 1214 |
-
# # # status = "Deduplicating embeddings across datasets..."
|
| 1215 |
-
# # # yield status, ""
|
| 1216 |
-
# # # duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 1217 |
-
# # # embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 1218 |
-
# # # )
|
| 1219 |
-
|
| 1220 |
-
# # # num_duplicates = len(duplicate_indices_in_ds2)
|
| 1221 |
-
# # # num_total_ds2 = len(texts2)
|
| 1222 |
-
# # # num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 1223 |
-
|
| 1224 |
-
# # # result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 1225 |
-
# # # result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 1226 |
-
# # # result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 1227 |
-
|
| 1228 |
-
# # # # Show deduplicated examples
|
| 1229 |
-
# # # if num_duplicates > 0:
|
| 1230 |
-
# # # result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 1231 |
-
# # # num_examples = min(5, num_duplicates)
|
| 1232 |
-
# # # for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 1233 |
-
# # # original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 1234 |
-
# # # original_text = texts1[original_idx]
|
| 1235 |
-
# # # duplicate_text = texts2[duplicate_idx]
|
| 1236 |
-
# # # differences = display_word_differences(original_text, duplicate_text)
|
| 1237 |
-
# # # result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 1238 |
-
# # # result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 1239 |
-
# # # result_text += f"**Differences:**\n{differences}\n"
|
| 1240 |
-
# # # result_text += "-" * 50 + "\n\n"
|
| 1241 |
-
# # # else:
|
| 1242 |
-
# # # result_text += "No duplicates found."
|
| 1243 |
-
|
| 1244 |
-
# # # # Final status
|
| 1245 |
-
# # # status = "Deduplication completed."
|
| 1246 |
-
# # # yield status, result_text
|
| 1247 |
|
| 1248 |
# # # except Exception as e:
|
|
|
|
| 1249 |
# # # yield f"An error occurred: {e}", ""
|
| 1250 |
# # # raise e
|
| 1251 |
|
| 1252 |
-
# # # def deduplicate_across_datasets(
|
| 1253 |
-
# # # embedding_matrix_1: np.ndarray,
|
| 1254 |
-
# # # embedding_matrix_2: np.ndarray,
|
| 1255 |
-
# # # threshold: float,
|
| 1256 |
-
# # # batch_size: int = 1024,
|
| 1257 |
-
# # # progress=None
|
| 1258 |
-
# # # ) -> tuple[list[int], dict[int, int]]:
|
| 1259 |
-
# # # # Building the index from Dataset 1
|
| 1260 |
-
# # # progress(0, desc="Building search index from Dataset 1...")
|
| 1261 |
-
# # # reach = Reach(
|
| 1262 |
-
# # # vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
|
| 1263 |
-
# # # )
|
| 1264 |
-
|
| 1265 |
-
# # # duplicate_indices_in_test = []
|
| 1266 |
-
# # # duplicate_to_original_mapping = {}
|
| 1267 |
-
|
| 1268 |
-
# # # # Finding nearest neighbors between datasets
|
| 1269 |
-
# # # progress(0, desc="Finding nearest neighbors between datasets...")
|
| 1270 |
-
# # # results = reach.nearest_neighbor_threshold(
|
| 1271 |
-
# # # embedding_matrix_2,
|
| 1272 |
-
# # # threshold=threshold,
|
| 1273 |
-
# # # batch_size=batch_size,
|
| 1274 |
-
# # # show_progressbar=False, # Disable internal progress bar
|
| 1275 |
-
# # # )
|
| 1276 |
-
|
| 1277 |
-
# # # total_items = len(embedding_matrix_2)
|
| 1278 |
-
# # # # Processing duplicates with a progress bar
|
| 1279 |
-
# # # for i, similar_items in enumerate(
|
| 1280 |
-
# # # progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
|
| 1281 |
-
# # # ):
|
| 1282 |
-
# # # similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 1283 |
-
|
| 1284 |
-
# # # if similar_indices:
|
| 1285 |
-
# # # duplicate_indices_in_test.append(i)
|
| 1286 |
-
# # # duplicate_to_original_mapping[i] = similar_indices[0]
|
| 1287 |
-
|
| 1288 |
-
# # # return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 1289 |
-
|
| 1290 |
# # # # Adjust the height of the status_output component using custom CSS
|
| 1291 |
# # # with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 1292 |
# # # gr.Markdown("# Semantic Deduplication")
|
|
@@ -1347,3 +1337,369 @@ demo.launch()
|
|
| 1347 |
# # # )
|
| 1348 |
|
| 1349 |
# # # demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from model2vec import StaticModel
|
| 5 |
from reach import Reach
|
| 6 |
from difflib import ndiff
|
|
|
|
| 7 |
|
| 8 |
# Load the model at startup
|
| 9 |
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 10 |
|
| 11 |
+
# Default dataset parameters
|
| 12 |
default_dataset1_name = "sst2"
|
| 13 |
default_dataset1_split = "train"
|
| 14 |
default_dataset2_name = "sst2"
|
|
|
|
| 27 |
|
| 28 |
def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 29 |
embeddings = []
|
| 30 |
+
total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 31 |
+
for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
| 32 |
+
batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 33 |
embeddings.append(batch_embeddings)
|
| 34 |
+
progress((i + 1) / total_batches, desc=desc)
|
| 35 |
return np.concatenate(embeddings, axis=0)
|
| 36 |
|
| 37 |
+
def deduplicate(
|
| 38 |
+
embedding_matrix: np.ndarray,
|
| 39 |
+
threshold: float,
|
| 40 |
+
batch_size: int = 1024,
|
| 41 |
+
progress=None
|
| 42 |
+
) -> tuple[np.ndarray, dict[int, int]]:
|
| 43 |
+
# Building the index
|
| 44 |
+
progress(0, desc="Building search index...")
|
| 45 |
+
reach = Reach(
|
| 46 |
+
vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
| 47 |
+
)
|
| 48 |
|
| 49 |
deduplicated_indices = set(range(len(embedding_matrix)))
|
| 50 |
duplicate_to_original_mapping = {}
|
| 51 |
|
| 52 |
+
# Finding nearest neighbors
|
| 53 |
+
progress(0, desc="Finding nearest neighbors...")
|
| 54 |
results = reach.nearest_neighbor_threshold(
|
| 55 |
embedding_matrix,
|
| 56 |
threshold=threshold,
|
| 57 |
batch_size=batch_size,
|
| 58 |
+
show_progressbar=False, # Disable internal progress bar
|
| 59 |
)
|
| 60 |
|
| 61 |
+
# Processing duplicates with a progress bar
|
| 62 |
total_items = len(embedding_matrix)
|
| 63 |
+
for i, similar_items in enumerate(
|
| 64 |
+
progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
| 65 |
+
):
|
| 66 |
if i not in deduplicated_indices:
|
| 67 |
continue
|
| 68 |
|
|
|
|
| 75 |
|
| 76 |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def display_word_differences(x: str, y: str) -> str:
|
| 79 |
diff = ndiff(x.split(), y.split())
|
| 80 |
+
return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 81 |
|
| 82 |
def perform_deduplication(
|
| 83 |
deduplication_type,
|
|
|
|
| 88 |
dataset2_split="",
|
| 89 |
dataset2_text_column="",
|
| 90 |
threshold=default_threshold,
|
| 91 |
+
progress=gr.Progress(track_tqdm=True),
|
| 92 |
):
|
| 93 |
try:
|
| 94 |
+
# Convert threshold to float
|
| 95 |
threshold = float(threshold)
|
| 96 |
|
| 97 |
+
# Initialize status message
|
| 98 |
+
status = ""
|
| 99 |
+
|
| 100 |
if deduplication_type == "Single dataset":
|
| 101 |
+
# Load Dataset 1
|
| 102 |
+
status = "Loading Dataset 1..."
|
| 103 |
+
yield status, ""
|
| 104 |
+
if (
|
| 105 |
+
dataset1_name == default_dataset1_name
|
| 106 |
+
and dataset1_split == default_dataset1_split
|
| 107 |
+
):
|
| 108 |
+
ds = ds_default1
|
| 109 |
+
else:
|
| 110 |
+
ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 111 |
|
| 112 |
+
# Extract texts
|
| 113 |
+
status = "Extracting texts from Dataset 1..."
|
| 114 |
+
yield status, ""
|
| 115 |
+
texts = [example[dataset1_text_column] for example in ds]
|
| 116 |
|
| 117 |
+
# Compute embeddings
|
| 118 |
+
status = "Computing embeddings for Dataset 1..."
|
| 119 |
+
yield status, ""
|
| 120 |
+
embedding_matrix = compute_embeddings(
|
| 121 |
+
texts,
|
| 122 |
+
batch_size=64,
|
| 123 |
+
progress=progress,
|
| 124 |
+
desc="Computing embeddings for Dataset 1",
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Deduplicate
|
| 128 |
+
status = "Deduplicating embeddings..."
|
| 129 |
+
yield status, ""
|
| 130 |
+
deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 131 |
+
embedding_matrix, threshold, progress=progress
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# Prepare the results
|
| 135 |
num_duplicates = len(duplicate_to_original_mapping)
|
| 136 |
num_total = len(texts)
|
| 137 |
num_deduplicated = len(deduplicated_indices)
|
| 138 |
|
| 139 |
result_text = f"**Total documents:** {num_total}\n"
|
| 140 |
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 141 |
+
result_text += (
|
| 142 |
+
f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 143 |
+
)
|
| 144 |
|
| 145 |
+
# Show deduplicated examples
|
| 146 |
if num_duplicates > 0:
|
| 147 |
result_text += "**Examples of duplicates found:**\n\n"
|
| 148 |
num_examples = min(5, num_duplicates)
|
|
|
|
| 157 |
else:
|
| 158 |
result_text += "No duplicates found."
|
| 159 |
|
| 160 |
+
# Final status
|
| 161 |
+
status = "Deduplication completed."
|
| 162 |
+
yield status, result_text
|
| 163 |
|
| 164 |
elif deduplication_type == "Cross-dataset":
|
| 165 |
+
# Similar code for cross-dataset deduplication
|
| 166 |
+
# Load Dataset 1
|
| 167 |
+
status = "Loading Dataset 1..."
|
| 168 |
+
yield status, ""
|
| 169 |
+
if (
|
| 170 |
+
dataset1_name == default_dataset1_name
|
| 171 |
+
and dataset1_split == default_dataset1_split
|
| 172 |
+
):
|
| 173 |
+
ds1 = ds_default1
|
| 174 |
+
else:
|
| 175 |
+
ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 176 |
+
|
| 177 |
+
# Load Dataset 2
|
| 178 |
+
status = "Loading Dataset 2..."
|
| 179 |
+
yield status, ""
|
| 180 |
+
if (
|
| 181 |
+
dataset2_name == default_dataset2_name
|
| 182 |
+
and dataset2_split == default_dataset2_split
|
| 183 |
+
):
|
| 184 |
+
ds2 = ds_default2
|
| 185 |
+
else:
|
| 186 |
+
ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 187 |
|
| 188 |
+
# Extract texts from Dataset 1
|
| 189 |
+
status = "Extracting texts from Dataset 1..."
|
| 190 |
+
yield status, ""
|
| 191 |
texts1 = [example[dataset1_text_column] for example in ds1]
|
|
|
|
| 192 |
|
| 193 |
+
# Extract texts from Dataset 2
|
| 194 |
+
status = "Extracting texts from Dataset 2..."
|
| 195 |
+
yield status, ""
|
| 196 |
+
texts2 = [example[dataset2_text_column] for example in ds2]
|
| 197 |
|
| 198 |
+
# Compute embeddings for Dataset 1
|
| 199 |
+
status = "Computing embeddings for Dataset 1..."
|
| 200 |
+
yield status, ""
|
| 201 |
+
embedding_matrix1 = compute_embeddings(
|
| 202 |
+
texts1,
|
| 203 |
+
batch_size=64,
|
| 204 |
+
progress=progress,
|
| 205 |
+
desc="Computing embeddings for Dataset 1",
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# Compute embeddings for Dataset 2
|
| 209 |
+
status = "Computing embeddings for Dataset 2..."
|
| 210 |
+
yield status, ""
|
| 211 |
+
embedding_matrix2 = compute_embeddings(
|
| 212 |
+
texts2,
|
| 213 |
+
batch_size=64,
|
| 214 |
+
progress=progress,
|
| 215 |
+
desc="Computing embeddings for Dataset 2",
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# Deduplicate across datasets
|
| 219 |
+
status = "Deduplicating embeddings across datasets..."
|
| 220 |
+
yield status, ""
|
| 221 |
+
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 222 |
+
embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 223 |
+
)
|
| 224 |
|
| 225 |
num_duplicates = len(duplicate_indices_in_ds2)
|
| 226 |
num_total_ds2 = len(texts2)
|
|
|
|
| 230 |
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 231 |
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 232 |
|
| 233 |
+
# Show deduplicated examples
|
| 234 |
if num_duplicates > 0:
|
| 235 |
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 236 |
num_examples = min(5, num_duplicates)
|
|
|
|
| 246 |
else:
|
| 247 |
result_text += "No duplicates found."
|
| 248 |
|
| 249 |
+
# Final status
|
| 250 |
+
status = "Deduplication completed."
|
| 251 |
+
yield status, result_text
|
| 252 |
|
| 253 |
except Exception as e:
|
| 254 |
yield f"An error occurred: {e}", ""
|
| 255 |
+
raise e
|
| 256 |
+
|
| 257 |
+
def deduplicate_across_datasets(
|
| 258 |
+
embedding_matrix_1: np.ndarray,
|
| 259 |
+
embedding_matrix_2: np.ndarray,
|
| 260 |
+
threshold: float,
|
| 261 |
+
batch_size: int = 1024,
|
| 262 |
+
progress=None
|
| 263 |
+
) -> tuple[list[int], dict[int, int]]:
|
| 264 |
+
# Building the index from Dataset 1
|
| 265 |
+
progress(0, desc="Building search index from Dataset 1...")
|
| 266 |
+
reach = Reach(
|
| 267 |
+
vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
duplicate_indices_in_test = []
|
| 271 |
+
duplicate_to_original_mapping = {}
|
| 272 |
+
|
| 273 |
+
# Finding nearest neighbors between datasets
|
| 274 |
+
progress(0, desc="Finding nearest neighbors between datasets...")
|
| 275 |
+
results = reach.nearest_neighbor_threshold(
|
| 276 |
+
embedding_matrix_2,
|
| 277 |
+
threshold=threshold,
|
| 278 |
+
batch_size=batch_size,
|
| 279 |
+
show_progressbar=False, # Disable internal progress bar
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
total_items = len(embedding_matrix_2)
|
| 283 |
+
# Processing duplicates with a progress bar
|
| 284 |
+
for i, similar_items in enumerate(
|
| 285 |
+
progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
|
| 286 |
+
):
|
| 287 |
+
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 288 |
|
| 289 |
+
if similar_indices:
|
| 290 |
+
duplicate_indices_in_test.append(i)
|
| 291 |
+
duplicate_to_original_mapping[i] = similar_indices[0]
|
| 292 |
+
|
| 293 |
+
return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 294 |
+
|
| 295 |
+
# Adjust the height of the status_output component using custom CSS
|
| 296 |
+
with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 297 |
gr.Markdown("# Semantic Deduplication")
|
| 298 |
|
| 299 |
deduplication_type = gr.Radio(
|
| 300 |
choices=["Single dataset", "Cross-dataset"],
|
| 301 |
label="Deduplication Type",
|
| 302 |
+
value="Single dataset",
|
| 303 |
)
|
| 304 |
|
| 305 |
with gr.Row():
|
|
|
|
| 316 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 317 |
|
| 318 |
threshold = gr.Slider(
|
| 319 |
+
minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
|
|
|
|
|
|
|
|
|
|
| 320 |
)
|
| 321 |
|
| 322 |
compute_button = gr.Button("Compute")
|
| 323 |
|
| 324 |
+
# Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
|
| 325 |
status_output = gr.Markdown(elem_id="status_output")
|
| 326 |
+
result_output = gr.Markdown()
|
| 327 |
|
| 328 |
+
# Function to update the visibility of dataset2_inputs
|
| 329 |
def update_visibility(deduplication_type_value):
|
| 330 |
if deduplication_type_value == "Cross-dataset":
|
| 331 |
return gr.update(visible=True)
|
|
|
|
| 333 |
return gr.update(visible=False)
|
| 334 |
|
| 335 |
deduplication_type.change(
|
| 336 |
+
update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
|
|
|
|
|
|
| 337 |
)
|
| 338 |
|
| 339 |
compute_button.click(
|
|
|
|
| 346 |
dataset2_name,
|
| 347 |
dataset2_split,
|
| 348 |
dataset2_text_column,
|
| 349 |
+
threshold,
|
| 350 |
],
|
| 351 |
+
outputs=[status_output, result_output],
|
| 352 |
)
|
| 353 |
|
| 354 |
demo.launch()
|
| 355 |
|
| 356 |
+
|
| 357 |
# import gradio as gr
|
| 358 |
# from datasets import load_dataset
|
| 359 |
# import numpy as np
|
|
|
|
| 393 |
# """
|
| 394 |
# Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 395 |
# """
|
|
|
|
|
|
|
| 396 |
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 397 |
|
| 398 |
# deduplicated_indices = set(range(len(embedding_matrix)))
|
| 399 |
# duplicate_to_original_mapping = {}
|
| 400 |
|
|
|
|
|
|
|
| 401 |
# results = reach.nearest_neighbor_threshold(
|
| 402 |
# embedding_matrix,
|
| 403 |
# threshold=threshold,
|
| 404 |
# batch_size=batch_size,
|
| 405 |
+
# show_progressbar=False
|
| 406 |
# )
|
| 407 |
|
|
|
|
| 408 |
# total_items = len(embedding_matrix)
|
| 409 |
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 410 |
# if i not in deduplicated_indices:
|
|
|
|
| 423 |
# """
|
| 424 |
# Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 425 |
# """
|
|
|
|
|
|
|
| 426 |
# reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 427 |
|
| 428 |
# duplicate_indices_in_test = []
|
| 429 |
# duplicate_to_original_mapping = {}
|
| 430 |
|
|
|
|
|
|
|
| 431 |
# results = reach.nearest_neighbor_threshold(
|
| 432 |
# embedding_matrix_2,
|
| 433 |
# threshold=threshold,
|
| 434 |
# batch_size=batch_size,
|
| 435 |
+
# show_progressbar=False
|
| 436 |
# )
|
| 437 |
|
| 438 |
# total_items = len(embedding_matrix_2)
|
|
|
|
| 439 |
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
| 440 |
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 441 |
|
|
|
|
| 461 |
# progress=gr.Progress(track_tqdm=True)
|
| 462 |
# ):
|
| 463 |
# try:
|
|
|
|
| 464 |
# threshold = float(threshold)
|
| 465 |
|
|
|
|
|
|
|
|
|
|
| 466 |
# if deduplication_type == "Single dataset":
|
| 467 |
+
# ds = ds_default1 if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split else load_dataset(dataset1_name, split=dataset1_split)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
# texts = [example[dataset1_text_column] for example in ds]
|
| 469 |
|
|
|
|
|
|
|
|
|
|
| 470 |
# embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
| 471 |
+
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
| 472 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
# num_duplicates = len(duplicate_to_original_mapping)
|
| 474 |
# num_total = len(texts)
|
| 475 |
# num_deduplicated = len(deduplicated_indices)
|
|
|
|
| 478 |
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 479 |
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 480 |
|
|
|
|
| 481 |
# if num_duplicates > 0:
|
| 482 |
# result_text += "**Examples of duplicates found:**\n\n"
|
| 483 |
# num_examples = min(5, num_duplicates)
|
|
|
|
| 492 |
# else:
|
| 493 |
# result_text += "No duplicates found."
|
| 494 |
|
| 495 |
+
# yield result_text
|
|
|
|
|
|
|
| 496 |
|
| 497 |
# elif deduplication_type == "Cross-dataset":
|
| 498 |
+
# ds1 = ds_default1 if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split else load_dataset(dataset1_name, split=dataset1_split)
|
| 499 |
+
# ds2 = ds_default2 if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split else load_dataset(dataset2_name, split=dataset2_split)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
|
|
|
|
|
|
|
|
|
|
| 501 |
# texts1 = [example[dataset1_text_column] for example in ds1]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
# texts2 = [example[dataset2_text_column] for example in ds2]
|
| 503 |
|
|
|
|
|
|
|
|
|
|
| 504 |
# embedding_matrix1 = compute_embeddings(texts1, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
# embedding_matrix2 = compute_embeddings(texts2, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 2")
|
| 506 |
|
| 507 |
+
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
|
| 509 |
# num_duplicates = len(duplicate_indices_in_ds2)
|
| 510 |
# num_total_ds2 = len(texts2)
|
|
|
|
| 514 |
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 515 |
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 516 |
|
|
|
|
| 517 |
# if num_duplicates > 0:
|
| 518 |
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 519 |
# num_examples = min(5, num_duplicates)
|
|
|
|
| 529 |
# else:
|
| 530 |
# result_text += "No duplicates found."
|
| 531 |
|
| 532 |
+
# yield result_text
|
|
|
|
|
|
|
| 533 |
|
| 534 |
# except Exception as e:
|
| 535 |
# yield f"An error occurred: {e}", ""
|
|
|
|
| 536 |
|
| 537 |
+
# # Adjust the height of the status_output and result_output components
|
| 538 |
+
# with gr.Blocks(css="#status_output { height: 300px; overflow: auto; } #result_output { height: 300px; overflow: auto; }") as demo:
|
| 539 |
# gr.Markdown("# Semantic Deduplication")
|
| 540 |
|
| 541 |
# deduplication_type = gr.Radio(
|
|
|
|
| 566 |
|
| 567 |
# compute_button = gr.Button("Compute")
|
| 568 |
|
| 569 |
+
# status_output = gr.Markdown(elem_id="status_output")
|
| 570 |
+
# result_output = gr.Markdown(elem_id="result_output")
|
| 571 |
|
|
|
|
| 572 |
# def update_visibility(deduplication_type_value):
|
| 573 |
# if deduplication_type_value == "Cross-dataset":
|
| 574 |
# return gr.update(visible=True)
|
|
|
|
| 598 |
|
| 599 |
# demo.launch()
|
| 600 |
|
| 601 |
+
# # import gradio as gr
|
| 602 |
+
# # from datasets import load_dataset
|
| 603 |
+
# # import numpy as np
|
| 604 |
+
# # from model2vec import StaticModel
|
| 605 |
+
# # from reach import Reach
|
| 606 |
+
# # from difflib import ndiff
|
| 607 |
+
# # import tqdm
|
| 608 |
|
| 609 |
+
# # # Load the model at startup
|
| 610 |
+
# # model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 611 |
|
| 612 |
+
# # # Update default dataset to 'sst2' and set default threshold to 0.9
|
| 613 |
+
# # default_dataset1_name = "sst2"
|
| 614 |
+
# # default_dataset1_split = "train"
|
| 615 |
+
# # default_dataset2_name = "sst2"
|
| 616 |
+
# # default_dataset2_split = "validation"
|
| 617 |
+
# # default_text_column = "sentence"
|
| 618 |
+
# # default_threshold = 0.9
|
| 619 |
|
| 620 |
+
# # # Load the default datasets at startup
|
| 621 |
+
# # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 622 |
+
# # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 623 |
|
| 624 |
+
# # def batch_iterable(iterable, batch_size):
|
| 625 |
+
# # """Helper function to create batches from an iterable."""
|
| 626 |
+
# # for i in range(0, len(iterable), batch_size):
|
| 627 |
+
# # yield iterable[i:i + batch_size]
|
| 628 |
|
| 629 |
+
# # def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 630 |
+
# # embeddings = []
|
| 631 |
+
# # for batch in progress.tqdm(batch_iterable(texts, batch_size), total=(len(texts) + batch_size - 1) // batch_size, desc=desc):
|
| 632 |
+
# # batch_embeddings = model.encode(batch, show_progressbar=False)
|
| 633 |
+
# # embeddings.append(batch_embeddings)
|
| 634 |
+
# # return np.concatenate(embeddings, axis=0)
|
| 635 |
|
| 636 |
+
# # def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
| 637 |
+
# # """
|
| 638 |
+
# # Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 639 |
+
# # """
|
| 640 |
+
# # # Building the index
|
| 641 |
+
# # progress(0, desc="Building search index...")
|
| 642 |
+
# # reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
|
|
|
| 643 |
|
| 644 |
+
# # deduplicated_indices = set(range(len(embedding_matrix)))
|
| 645 |
+
# # duplicate_to_original_mapping = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 646 |
|
| 647 |
+
# # # Finding nearest neighbors
|
| 648 |
+
# # progress(0, desc="Finding nearest neighbors...")
|
| 649 |
+
# # results = reach.nearest_neighbor_threshold(
|
| 650 |
+
# # embedding_matrix,
|
| 651 |
+
# # threshold=threshold,
|
| 652 |
+
# # batch_size=batch_size,
|
| 653 |
+
# # show_progressbar=False # Disable internal progress bar
|
| 654 |
+
# # )
|
| 655 |
|
| 656 |
+
# # # Processing duplicates with a progress bar
|
| 657 |
+
# # total_items = len(embedding_matrix)
|
| 658 |
+
# # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 659 |
+
# # if i not in deduplicated_indices:
|
| 660 |
+
# # continue
|
|
|
|
| 661 |
|
| 662 |
+
# # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
|
|
|
|
|
|
|
|
|
| 663 |
|
| 664 |
+
# # for sim_idx in similar_indices:
|
| 665 |
+
# # if sim_idx in deduplicated_indices:
|
| 666 |
+
# # deduplicated_indices.remove(sim_idx)
|
| 667 |
+
# # duplicate_to_original_mapping[sim_idx] = i
|
|
|
|
| 668 |
|
| 669 |
+
# # return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 670 |
|
| 671 |
+
# # def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
| 672 |
+
# # """
|
| 673 |
+
# # Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 674 |
+
# # """
|
| 675 |
+
# # # Building the index from Dataset 1
|
| 676 |
+
# # progress(0, desc="Building search index from Dataset 1...")
|
| 677 |
+
# # reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 678 |
|
| 679 |
+
# # duplicate_indices_in_test = []
|
| 680 |
+
# # duplicate_to_original_mapping = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 681 |
|
| 682 |
+
# # # Finding nearest neighbors between datasets
|
| 683 |
+
# # progress(0, desc="Finding nearest neighbors between datasets...")
|
| 684 |
+
# # results = reach.nearest_neighbor_threshold(
|
| 685 |
+
# # embedding_matrix_2,
|
| 686 |
+
# # threshold=threshold,
|
| 687 |
+
# # batch_size=batch_size,
|
| 688 |
+
# # show_progressbar=False # Disable internal progress bar
|
| 689 |
+
# # )
|
| 690 |
|
| 691 |
+
# # total_items = len(embedding_matrix_2)
|
| 692 |
+
# # # Processing duplicates with a progress bar
|
| 693 |
+
# # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
| 694 |
+
# # similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 695 |
|
| 696 |
+
# # if similar_indices:
|
| 697 |
+
# # duplicate_indices_in_test.append(i)
|
| 698 |
+
# # duplicate_to_original_mapping[i] = similar_indices[0]
|
| 699 |
|
| 700 |
+
# # return duplicate_indices_in_test, duplicate_to_original_mapping
|
|
|
|
|
|
|
| 701 |
|
| 702 |
+
# # def display_word_differences(x: str, y: str) -> str:
|
| 703 |
+
# # diff = ndiff(x.split(), y.split())
|
| 704 |
+
# # return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 705 |
|
| 706 |
+
# # def perform_deduplication(
|
| 707 |
+
# # deduplication_type,
|
| 708 |
+
# # dataset1_name,
|
| 709 |
+
# # dataset1_split,
|
| 710 |
+
# # dataset1_text_column,
|
| 711 |
+
# # dataset2_name="",
|
| 712 |
+
# # dataset2_split="",
|
| 713 |
+
# # dataset2_text_column="",
|
| 714 |
+
# # threshold=default_threshold,
|
| 715 |
+
# # progress=gr.Progress(track_tqdm=True)
|
| 716 |
+
# # ):
|
| 717 |
+
# # try:
|
| 718 |
+
# # # Convert threshold to float
|
| 719 |
+
# # threshold = float(threshold)
|
| 720 |
|
| 721 |
+
# # # Initialize status message
|
| 722 |
+
# # status = ""
|
| 723 |
|
| 724 |
+
# # if deduplication_type == "Single dataset":
|
| 725 |
+
# # # Load Dataset 1
|
| 726 |
+
# # status = "Loading Dataset 1..."
|
| 727 |
+
# # yield status, ""
|
| 728 |
+
# # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 729 |
+
# # ds = ds_default1
|
| 730 |
+
# # else:
|
| 731 |
+
# # ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 732 |
|
| 733 |
+
# # # Extract texts
|
| 734 |
+
# # status = "Extracting texts from Dataset 1..."
|
| 735 |
+
# # yield status, ""
|
| 736 |
+
# # texts = [example[dataset1_text_column] for example in ds]
|
|
|
|
| 737 |
|
| 738 |
+
# # # Compute embeddings
|
| 739 |
+
# # status = "Computing embeddings for Dataset 1..."
|
| 740 |
+
# # yield status, ""
|
| 741 |
+
# # embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
| 742 |
|
| 743 |
+
# # # Deduplicate
|
| 744 |
+
# # status = "Deduplicating embeddings..."
|
| 745 |
+
# # yield status, ""
|
| 746 |
+
# # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 747 |
+
# # embedding_matrix, threshold, progress=progress
|
| 748 |
+
# # )
|
|
|
|
| 749 |
|
| 750 |
+
# # # Prepare the results
|
| 751 |
+
# # num_duplicates = len(duplicate_to_original_mapping)
|
| 752 |
+
# # num_total = len(texts)
|
| 753 |
+
# # num_deduplicated = len(deduplicated_indices)
|
| 754 |
|
| 755 |
+
# # result_text = f"**Total documents:** {num_total}\n"
|
| 756 |
+
# # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 757 |
+
# # result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 758 |
|
| 759 |
+
# # # Show deduplicated examples
|
| 760 |
+
# # if num_duplicates > 0:
|
| 761 |
+
# # result_text += "**Examples of duplicates found:**\n\n"
|
| 762 |
+
# # num_examples = min(5, num_duplicates)
|
| 763 |
+
# # for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 764 |
+
# # original_text = texts[original_idx]
|
| 765 |
+
# # duplicate_text = texts[duplicate_idx]
|
| 766 |
+
# # differences = display_word_differences(original_text, duplicate_text)
|
| 767 |
+
# # result_text += f"**Original text:**\n{original_text}\n\n"
|
| 768 |
+
# # result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 769 |
+
# # result_text += f"**Differences:**\n{differences}\n"
|
| 770 |
+
# # result_text += "-" * 50 + "\n\n"
|
| 771 |
+
# # else:
|
| 772 |
+
# # result_text += "No duplicates found."
|
| 773 |
|
| 774 |
+
# # # Final status
|
| 775 |
+
# # status = "Deduplication completed."
|
| 776 |
+
# # yield status, result_text
|
| 777 |
|
| 778 |
+
# # elif deduplication_type == "Cross-dataset":
|
| 779 |
+
# # # Load Dataset 1
|
| 780 |
+
# # status = "Loading Dataset 1..."
|
| 781 |
+
# # yield status, ""
|
| 782 |
+
# # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 783 |
+
# # ds1 = ds_default1
|
| 784 |
+
# # else:
|
| 785 |
+
# # ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 786 |
|
| 787 |
+
# # # Load Dataset 2
|
| 788 |
+
# # status = "Loading Dataset 2..."
|
| 789 |
+
# # yield status, ""
|
| 790 |
+
# # if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 791 |
+
# # ds2 = ds_default2
|
| 792 |
+
# # else:
|
| 793 |
+
# # ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 794 |
+
|
| 795 |
+
# # # Extract texts from Dataset 1
|
| 796 |
+
# # status = "Extracting texts from Dataset 1..."
|
| 797 |
+
# # yield status, ""
|
| 798 |
+
# # texts1 = [example[dataset1_text_column] for example in ds1]
|
| 799 |
+
|
| 800 |
+
# # # Extract texts from Dataset 2
|
| 801 |
+
# # status = "Extracting texts from Dataset 2..."
|
| 802 |
+
# # yield status, ""
|
| 803 |
+
# # texts2 = [example[dataset2_text_column] for example in ds2]
|
| 804 |
+
|
| 805 |
+
# # # Compute embeddings for Dataset 1
|
| 806 |
+
# # status = "Computing embeddings for Dataset 1..."
|
| 807 |
+
# # yield status, ""
|
| 808 |
+
# # embedding_matrix1 = compute_embeddings(texts1, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
| 809 |
+
|
| 810 |
+
# # # Compute embeddings for Dataset 2
|
| 811 |
+
# # status = "Computing embeddings for Dataset 2..."
|
| 812 |
+
# # yield status, ""
|
| 813 |
+
# # embedding_matrix2 = compute_embeddings(texts2, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 2")
|
| 814 |
+
|
| 815 |
+
# # # Deduplicate across datasets
|
| 816 |
+
# # status = "Deduplicating embeddings across datasets..."
|
| 817 |
+
# # yield status, ""
|
| 818 |
+
# # duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 819 |
+
# # embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 820 |
+
# # )
|
| 821 |
|
| 822 |
+
# # num_duplicates = len(duplicate_indices_in_ds2)
|
| 823 |
+
# # num_total_ds2 = len(texts2)
|
| 824 |
+
# # num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 825 |
+
|
| 826 |
+
# # result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 827 |
+
# # result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 828 |
+
# # result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 829 |
+
|
| 830 |
+
# # # Show deduplicated examples
|
| 831 |
+
# # if num_duplicates > 0:
|
| 832 |
+
# # result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 833 |
+
# # num_examples = min(5, num_duplicates)
|
| 834 |
+
# # for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 835 |
+
# # original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 836 |
+
# # original_text = texts1[original_idx]
|
| 837 |
+
# # duplicate_text = texts2[duplicate_idx]
|
| 838 |
+
# # differences = display_word_differences(original_text, duplicate_text)
|
| 839 |
+
# # result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 840 |
+
# # result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 841 |
+
# # result_text += f"**Differences:**\n{differences}\n"
|
| 842 |
+
# # result_text += "-" * 50 + "\n\n"
|
| 843 |
+
# # else:
|
| 844 |
+
# # result_text += "No duplicates found."
|
| 845 |
+
|
| 846 |
+
# # # Final status
|
| 847 |
+
# # status = "Deduplication completed."
|
| 848 |
+
# # yield status, result_text
|
| 849 |
+
|
| 850 |
+
# # except Exception as e:
|
| 851 |
+
# # yield f"An error occurred: {e}", ""
|
| 852 |
+
# # raise e
|
| 853 |
+
|
| 854 |
+
# # with gr.Blocks() as demo:
|
| 855 |
+
# # gr.Markdown("# Semantic Deduplication")
|
| 856 |
+
|
| 857 |
+
# # deduplication_type = gr.Radio(
|
| 858 |
+
# # choices=["Single dataset", "Cross-dataset"],
|
| 859 |
+
# # label="Deduplication Type",
|
| 860 |
+
# # value="Single dataset"
|
| 861 |
+
# # )
|
| 862 |
+
|
| 863 |
+
# # with gr.Row():
|
| 864 |
+
# # dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
|
| 865 |
+
# # dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
| 866 |
+
# # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 867 |
+
|
| 868 |
+
# # dataset2_inputs = gr.Column(visible=False)
|
| 869 |
+
# # with dataset2_inputs:
|
| 870 |
+
# # gr.Markdown("### Dataset 2")
|
| 871 |
+
# # with gr.Row():
|
| 872 |
+
# # dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
|
| 873 |
+
# # dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 874 |
+
# # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 875 |
+
|
| 876 |
+
# # threshold = gr.Slider(
|
| 877 |
+
# # minimum=0.0,
|
| 878 |
+
# # maximum=1.0,
|
| 879 |
+
# # value=default_threshold,
|
| 880 |
+
# # label="Similarity Threshold"
|
| 881 |
+
# # )
|
| 882 |
+
|
| 883 |
+
# # compute_button = gr.Button("Compute")
|
| 884 |
+
|
| 885 |
+
# # status_output = gr.Markdown()
|
| 886 |
+
# # result_output = gr.Markdown()
|
| 887 |
+
|
| 888 |
+
# # # Function to update the visibility of dataset2_inputs
|
| 889 |
+
# # def update_visibility(deduplication_type_value):
|
| 890 |
+
# # if deduplication_type_value == "Cross-dataset":
|
| 891 |
+
# # return gr.update(visible=True)
|
| 892 |
+
# # else:
|
| 893 |
+
# # return gr.update(visible=False)
|
| 894 |
+
|
| 895 |
+
# # deduplication_type.change(
|
| 896 |
+
# # update_visibility,
|
| 897 |
+
# # inputs=deduplication_type,
|
| 898 |
+
# # outputs=dataset2_inputs
|
| 899 |
+
# # )
|
| 900 |
+
|
| 901 |
+
# # compute_button.click(
|
| 902 |
+
# # fn=perform_deduplication,
|
| 903 |
+
# # inputs=[
|
| 904 |
+
# # deduplication_type,
|
| 905 |
+
# # dataset1_name,
|
| 906 |
+
# # dataset1_split,
|
| 907 |
+
# # dataset1_text_column,
|
| 908 |
+
# # dataset2_name,
|
| 909 |
+
# # dataset2_split,
|
| 910 |
+
# # dataset2_text_column,
|
| 911 |
+
# # threshold
|
| 912 |
+
# # ],
|
| 913 |
+
# # outputs=[status_output, result_output]
|
| 914 |
+
# # )
|
| 915 |
+
|
| 916 |
+
# # demo.launch()
|
| 917 |
|
| 918 |
|
| 919 |
# # import gradio as gr
|
|
|
|
| 922 |
# # import model2vec
|
| 923 |
# # from reach import Reach
|
| 924 |
# # from difflib import ndiff
|
|
|
|
| 925 |
|
| 926 |
# # # Load the model at startup
|
| 927 |
# # model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
|
| 943 |
# # for i in range(0, len(iterable), batch_size):
|
| 944 |
# # yield iterable[i:i + batch_size]
|
| 945 |
|
| 946 |
+
# # def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 947 |
# # embeddings = []
|
| 948 |
# # total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 949 |
# # for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
|
|
|
| 956 |
# # embedding_matrix: np.ndarray,
|
| 957 |
# # threshold: float,
|
| 958 |
# # batch_size: int = 1024,
|
| 959 |
+
# # progress=None
|
|
|
|
| 960 |
# # ) -> tuple[np.ndarray, dict[int, int]]:
|
| 961 |
+
# # reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 962 |
|
| 963 |
# # deduplicated_indices = set(range(len(embedding_matrix)))
|
| 964 |
# # duplicate_to_original_mapping = {}
|
| 965 |
|
|
|
|
|
|
|
| 966 |
# # results = reach.nearest_neighbor_threshold(
|
| 967 |
# # embedding_matrix,
|
| 968 |
# # threshold=threshold,
|
| 969 |
# # batch_size=batch_size,
|
| 970 |
+
# # show_progressbar=False,
|
| 971 |
# # )
|
| 972 |
|
|
|
|
| 973 |
# # total_items = len(embedding_matrix)
|
| 974 |
+
# # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
|
|
|
|
|
|
|
|
|
| 975 |
# # if i not in deduplicated_indices:
|
| 976 |
# # continue
|
| 977 |
|
| 978 |
# # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
|
|
|
| 979 |
# # for sim_idx in similar_indices:
|
| 980 |
# # if sim_idx in deduplicated_indices:
|
| 981 |
# # deduplicated_indices.remove(sim_idx)
|
|
|
|
| 987 |
# # diff = ndiff(x.split(), y.split())
|
| 988 |
# # return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 989 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 990 |
# # def perform_deduplication(
|
| 991 |
# # deduplication_type,
|
| 992 |
# # dataset1_name,
|
|
|
|
| 998 |
# # threshold=default_threshold,
|
| 999 |
# # progress=gr.Progress(track_tqdm=True),
|
| 1000 |
# # ):
|
|
|
|
| 1001 |
# # try:
|
|
|
|
| 1002 |
# # threshold = float(threshold)
|
| 1003 |
|
|
|
|
|
|
|
|
|
|
| 1004 |
# # if deduplication_type == "Single dataset":
|
| 1005 |
+
# # ds = ds_default1 if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split else load_dataset(dataset1_name, split=dataset1_split)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1006 |
# # texts = [example[dataset1_text_column] for example in ds]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1007 |
|
| 1008 |
+
# # embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress)
|
| 1009 |
+
# # deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1010 |
|
|
|
|
| 1011 |
# # num_duplicates = len(duplicate_to_original_mapping)
|
| 1012 |
# # num_total = len(texts)
|
| 1013 |
# # num_deduplicated = len(deduplicated_indices)
|
| 1014 |
|
| 1015 |
# # result_text = f"**Total documents:** {num_total}\n"
|
| 1016 |
# # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 1017 |
+
# # result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
|
|
|
|
|
|
| 1018 |
|
|
|
|
| 1019 |
# # if num_duplicates > 0:
|
| 1020 |
# # result_text += "**Examples of duplicates found:**\n\n"
|
| 1021 |
# # num_examples = min(5, num_duplicates)
|
|
|
|
| 1030 |
# # else:
|
| 1031 |
# # result_text += "No duplicates found."
|
| 1032 |
|
| 1033 |
+
# # yield result_text
|
|
|
|
|
|
|
| 1034 |
|
| 1035 |
# # except Exception as e:
|
| 1036 |
+
# # yield f"An error occurred: {e}"
|
|
|
|
|
|
|
| 1037 |
|
| 1038 |
+
# # # Gradio interface setup
|
| 1039 |
# # with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 1040 |
# # gr.Markdown("# Semantic Deduplication")
|
| 1041 |
|
|
|
|
| 1058 |
# # dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 1059 |
# # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 1060 |
|
| 1061 |
+
# # threshold = gr.Slider(minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold")
|
|
|
|
|
|
|
| 1062 |
|
| 1063 |
# # compute_button = gr.Button("Compute")
|
| 1064 |
|
|
|
|
|
|
|
| 1065 |
# # result_output = gr.Markdown()
|
| 1066 |
|
|
|
|
| 1067 |
# # def update_visibility(deduplication_type_value):
|
| 1068 |
+
# # return gr.update(visible=True) if deduplication_type_value == "Cross-dataset" else gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
| 1069 |
|
| 1070 |
# # deduplication_type.change(
|
| 1071 |
# # update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
|
|
|
| 1083 |
# # dataset2_text_column,
|
| 1084 |
# # threshold,
|
| 1085 |
# # ],
|
| 1086 |
+
# # outputs=[result_output],
|
| 1087 |
# # )
|
| 1088 |
|
| 1089 |
# # demo.launch()
|
| 1090 |
|
| 1091 |
|
|
|
|
| 1092 |
# # # import gradio as gr
|
| 1093 |
# # # from datasets import load_dataset
|
| 1094 |
# # # import numpy as np
|
|
|
|
| 1095 |
# # # import model2vec
|
| 1096 |
# # # from reach import Reach
|
| 1097 |
# # # from difflib import ndiff
|
| 1098 |
+
# # # import time
|
| 1099 |
|
| 1100 |
# # # # Load the model at startup
|
| 1101 |
# # # model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
|
|
|
| 1112 |
# # # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 1113 |
# # # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 1114 |
|
|
|
|
| 1115 |
# # # def batch_iterable(iterable, batch_size):
|
| 1116 |
# # # """Helper function to create batches from an iterable."""
|
| 1117 |
# # # for i in range(0, len(iterable), batch_size):
|
| 1118 |
# # # yield iterable[i:i + batch_size]
|
| 1119 |
|
| 1120 |
+
# # # def log_time(message, start_time=None, logs=None):
|
| 1121 |
+
# # # """Helper function to log the start and end times."""
|
| 1122 |
+
# # # current_time = time.time()
|
| 1123 |
+
# # # if start_time is not None:
|
| 1124 |
+
# # # elapsed = current_time - start_time
|
| 1125 |
+
# # # log_message = f"{message} - Took {elapsed:.2f} seconds"
|
| 1126 |
+
# # # else:
|
| 1127 |
+
# # # log_message = f"{message} - Started"
|
| 1128 |
+
|
| 1129 |
+
# # # if logs is not None:
|
| 1130 |
+
# # # logs.append(log_message)
|
| 1131 |
+
|
| 1132 |
+
# # # def compute_embeddings(texts, batch_size, progress, logs, desc="Computing embeddings"):
|
| 1133 |
# # # embeddings = []
|
| 1134 |
# # # total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 1135 |
# # # for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
|
|
|
| 1142 |
# # # embedding_matrix: np.ndarray,
|
| 1143 |
# # # threshold: float,
|
| 1144 |
# # # batch_size: int = 1024,
|
| 1145 |
+
# # # progress=None,
|
| 1146 |
+
# # # logs=None
|
| 1147 |
# # # ) -> tuple[np.ndarray, dict[int, int]]:
|
| 1148 |
# # # # Building the index
|
| 1149 |
+
# # # log_time("Building search index", logs=logs)
|
| 1150 |
# # # reach = Reach(
|
| 1151 |
# # # vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
| 1152 |
# # # )
|
|
|
|
| 1155 |
# # # duplicate_to_original_mapping = {}
|
| 1156 |
|
| 1157 |
# # # # Finding nearest neighbors
|
| 1158 |
+
# # # log_time("Finding nearest neighbors", logs=logs)
|
| 1159 |
# # # results = reach.nearest_neighbor_threshold(
|
| 1160 |
# # # embedding_matrix,
|
| 1161 |
# # # threshold=threshold,
|
|
|
|
| 1165 |
|
| 1166 |
# # # # Processing duplicates with a progress bar
|
| 1167 |
# # # total_items = len(embedding_matrix)
|
| 1168 |
+
# # # log_time("Processing duplicates", logs=logs)
|
| 1169 |
# # # for i, similar_items in enumerate(
|
| 1170 |
# # # progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
| 1171 |
# # # ):
|
|
|
|
| 1185 |
# # # diff = ndiff(x.split(), y.split())
|
| 1186 |
# # # return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 1187 |
|
| 1188 |
+
# # # def encode_texts(texts, progress=None, logs=None):
|
|
|
|
| 1189 |
# # # embedding_matrix = model.encode(texts, show_progressbar=False)
|
| 1190 |
+
# # # log_time("Encoding texts completed", logs=logs)
|
| 1191 |
# # # return embedding_matrix
|
| 1192 |
|
| 1193 |
# # # def perform_deduplication(
|
|
|
|
| 1201 |
# # # threshold=default_threshold,
|
| 1202 |
# # # progress=gr.Progress(track_tqdm=True),
|
| 1203 |
# # # ):
|
| 1204 |
+
# # # logs = [] # To store log messages
|
| 1205 |
# # # try:
|
| 1206 |
# # # # Convert threshold to float
|
| 1207 |
# # # threshold = float(threshold)
|
| 1208 |
|
| 1209 |
# # # # Initialize status message
|
| 1210 |
+
# # # log_time("Deduplication started", logs=logs)
|
| 1211 |
|
| 1212 |
# # # if deduplication_type == "Single dataset":
|
| 1213 |
# # # # Load Dataset 1
|
| 1214 |
+
# # # start_time = time.time()
|
| 1215 |
+
# # # log_time("Loading Dataset 1", logs=logs)
|
| 1216 |
# # # if (
|
| 1217 |
# # # dataset1_name == default_dataset1_name
|
| 1218 |
# # # and dataset1_split == default_dataset1_split
|
|
|
|
| 1220 |
# # # ds = ds_default1
|
| 1221 |
# # # else:
|
| 1222 |
# # # ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 1223 |
+
# # # log_time("Loading Dataset 1 completed", start_time=start_time, logs=logs)
|
| 1224 |
|
| 1225 |
# # # # Extract texts
|
| 1226 |
+
# # # start_time = time.time()
|
| 1227 |
+
# # # log_time("Extracting texts from Dataset 1", logs=logs)
|
| 1228 |
# # # texts = [example[dataset1_text_column] for example in ds]
|
| 1229 |
+
# # # log_time("Extracting texts from Dataset 1 completed", start_time=start_time, logs=logs)
|
| 1230 |
+
|
| 1231 |
# # # # Compute embeddings
|
| 1232 |
+
# # # start_time = time.time()
|
| 1233 |
+
# # # log_time("Computing embeddings for Dataset 1", logs=logs)
|
| 1234 |
+
# # # embedding_matrix = encode_texts(texts, progress=progress, logs=logs)
|
| 1235 |
+
# # # log_time("Computing embeddings for Dataset 1 completed", start_time=start_time, logs=logs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1236 |
|
| 1237 |
# # # # Deduplicate
|
| 1238 |
+
# # # start_time = time.time()
|
| 1239 |
+
# # # log_time("Deduplicating embeddings", logs=logs)
|
| 1240 |
# # # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 1241 |
+
# # # embedding_matrix, threshold, progress=progress, logs=logs
|
| 1242 |
# # # )
|
| 1243 |
+
# # # log_time("Deduplication completed", start_time=start_time, logs=logs)
|
| 1244 |
|
| 1245 |
# # # # Prepare the results
|
| 1246 |
# # # num_duplicates = len(duplicate_to_original_mapping)
|
|
|
|
| 1268 |
# # # else:
|
| 1269 |
# # # result_text += "No duplicates found."
|
| 1270 |
|
| 1271 |
+
# # # log_time("Deduplication process finished", logs=logs)
|
| 1272 |
+
# # # full_log = "\n".join(logs) # Combine all logs into one output
|
| 1273 |
+
# # # yield full_log, result_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1274 |
|
| 1275 |
# # # except Exception as e:
|
| 1276 |
+
# # # full_log = "\n".join(logs) # Combine all logs into one output in case of an error
|
| 1277 |
# # # yield f"An error occurred: {e}", ""
|
| 1278 |
# # # raise e
|
| 1279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1280 |
# # # # Adjust the height of the status_output component using custom CSS
|
| 1281 |
# # # with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 1282 |
# # # gr.Markdown("# Semantic Deduplication")
|
|
|
|
| 1337 |
# # # )
|
| 1338 |
|
| 1339 |
# # # demo.launch()
|
| 1340 |
+
|
| 1341 |
+
|
| 1342 |
+
|
| 1343 |
+
# # # # import gradio as gr
|
| 1344 |
+
# # # # from datasets import load_dataset
|
| 1345 |
+
# # # # import numpy as np
|
| 1346 |
+
# # # # #from model2vec import StaticModel
|
| 1347 |
+
# # # # import model2vec
|
| 1348 |
+
# # # # from reach import Reach
|
| 1349 |
+
# # # # from difflib import ndiff
|
| 1350 |
+
|
| 1351 |
+
|
| 1352 |
+
# # # # # Load the model at startup
|
| 1353 |
+
# # # # model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 1354 |
+
|
| 1355 |
+
# # # # # Default dataset parameters
|
| 1356 |
+
# # # # default_dataset1_name = "sst2"
|
| 1357 |
+
# # # # default_dataset1_split = "train"
|
| 1358 |
+
# # # # default_dataset2_name = "sst2"
|
| 1359 |
+
# # # # default_dataset2_split = "validation"
|
| 1360 |
+
# # # # default_text_column = "sentence"
|
| 1361 |
+
# # # # default_threshold = 0.9
|
| 1362 |
+
|
| 1363 |
+
# # # # # Load the default datasets at startup
|
| 1364 |
+
# # # # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 1365 |
+
# # # # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 1366 |
+
|
| 1367 |
+
|
| 1368 |
+
# # # # def batch_iterable(iterable, batch_size):
|
| 1369 |
+
# # # # """Helper function to create batches from an iterable."""
|
| 1370 |
+
# # # # for i in range(0, len(iterable), batch_size):
|
| 1371 |
+
# # # # yield iterable[i:i + batch_size]
|
| 1372 |
+
|
| 1373 |
+
# # # # def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 1374 |
+
# # # # embeddings = []
|
| 1375 |
+
# # # # total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 1376 |
+
# # # # for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
| 1377 |
+
# # # # batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 1378 |
+
# # # # embeddings.append(batch_embeddings)
|
| 1379 |
+
# # # # progress((i + 1) / total_batches, desc=desc)
|
| 1380 |
+
# # # # return np.concatenate(embeddings, axis=0)
|
| 1381 |
+
|
| 1382 |
+
# # # # def deduplicate(
|
| 1383 |
+
# # # # embedding_matrix: np.ndarray,
|
| 1384 |
+
# # # # threshold: float,
|
| 1385 |
+
# # # # batch_size: int = 1024,
|
| 1386 |
+
# # # # progress=None
|
| 1387 |
+
# # # # ) -> tuple[np.ndarray, dict[int, int]]:
|
| 1388 |
+
# # # # # Building the index
|
| 1389 |
+
# # # # progress(0, desc="Building search index...")
|
| 1390 |
+
# # # # reach = Reach(
|
| 1391 |
+
# # # # vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
|
| 1392 |
+
# # # # )
|
| 1393 |
+
|
| 1394 |
+
# # # # deduplicated_indices = set(range(len(embedding_matrix)))
|
| 1395 |
+
# # # # duplicate_to_original_mapping = {}
|
| 1396 |
+
|
| 1397 |
+
# # # # # Finding nearest neighbors
|
| 1398 |
+
# # # # progress(0, desc="Finding nearest neighbors...")
|
| 1399 |
+
# # # # results = reach.nearest_neighbor_threshold(
|
| 1400 |
+
# # # # embedding_matrix,
|
| 1401 |
+
# # # # threshold=threshold,
|
| 1402 |
+
# # # # batch_size=batch_size,
|
| 1403 |
+
# # # # show_progressbar=False, # Disable internal progress bar
|
| 1404 |
+
# # # # )
|
| 1405 |
+
|
| 1406 |
+
# # # # # Processing duplicates with a progress bar
|
| 1407 |
+
# # # # total_items = len(embedding_matrix)
|
| 1408 |
+
# # # # for i, similar_items in enumerate(
|
| 1409 |
+
# # # # progress.tqdm(results, desc="Processing duplicates", total=total_items)
|
| 1410 |
+
# # # # ):
|
| 1411 |
+
# # # # if i not in deduplicated_indices:
|
| 1412 |
+
# # # # continue
|
| 1413 |
+
|
| 1414 |
+
# # # # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 1415 |
+
|
| 1416 |
+
# # # # for sim_idx in similar_indices:
|
| 1417 |
+
# # # # if sim_idx in deduplicated_indices:
|
| 1418 |
+
# # # # deduplicated_indices.remove(sim_idx)
|
| 1419 |
+
# # # # duplicate_to_original_mapping[sim_idx] = i
|
| 1420 |
+
|
| 1421 |
+
# # # # return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 1422 |
+
|
| 1423 |
+
# # # # def display_word_differences(x: str, y: str) -> str:
|
| 1424 |
+
# # # # diff = ndiff(x.split(), y.split())
|
| 1425 |
+
# # # # return " ".join([word for word in diff if word.startswith(("+", "-"))])
|
| 1426 |
+
|
| 1427 |
+
|
| 1428 |
+
# # # # def encode_texts(texts, progress=None):
|
| 1429 |
+
# # # # embedding_matrix = model.encode(texts, show_progressbar=False)
|
| 1430 |
+
# # # # return embedding_matrix
|
| 1431 |
+
|
| 1432 |
+
# # # # def perform_deduplication(
|
| 1433 |
+
# # # # deduplication_type,
|
| 1434 |
+
# # # # dataset1_name,
|
| 1435 |
+
# # # # dataset1_split,
|
| 1436 |
+
# # # # dataset1_text_column,
|
| 1437 |
+
# # # # dataset2_name="",
|
| 1438 |
+
# # # # dataset2_split="",
|
| 1439 |
+
# # # # dataset2_text_column="",
|
| 1440 |
+
# # # # threshold=default_threshold,
|
| 1441 |
+
# # # # progress=gr.Progress(track_tqdm=True),
|
| 1442 |
+
# # # # ):
|
| 1443 |
+
# # # # try:
|
| 1444 |
+
# # # # # Convert threshold to float
|
| 1445 |
+
# # # # threshold = float(threshold)
|
| 1446 |
+
|
| 1447 |
+
# # # # # Initialize status message
|
| 1448 |
+
# # # # status = ""
|
| 1449 |
+
|
| 1450 |
+
# # # # if deduplication_type == "Single dataset":
|
| 1451 |
+
# # # # # Load Dataset 1
|
| 1452 |
+
# # # # status = "Loading Dataset 1..."
|
| 1453 |
+
# # # # yield status, ""
|
| 1454 |
+
# # # # if (
|
| 1455 |
+
# # # # dataset1_name == default_dataset1_name
|
| 1456 |
+
# # # # and dataset1_split == default_dataset1_split
|
| 1457 |
+
# # # # ):
|
| 1458 |
+
# # # # ds = ds_default1
|
| 1459 |
+
# # # # else:
|
| 1460 |
+
# # # # ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 1461 |
+
|
| 1462 |
+
# # # # # Extract texts
|
| 1463 |
+
# # # # status = "Extracting texts from Dataset 1..."
|
| 1464 |
+
# # # # yield status, ""
|
| 1465 |
+
# # # # texts = [example[dataset1_text_column] for example in ds]
|
| 1466 |
+
# # # # # Compute embeddings
|
| 1467 |
+
# # # # status = "Computing embeddings for Dataset 1..."
|
| 1468 |
+
# # # # yield status, ""
|
| 1469 |
+
# # # # embedding_matrix = encode_texts(texts, progress=progress)
|
| 1470 |
+
# # # # #embedding_matrix = model.encode(texts, show_progressbar=True)
|
| 1471 |
+
# # # # # embedding_matrix = compute_embeddings(
|
| 1472 |
+
# # # # # texts,
|
| 1473 |
+
# # # # # batch_size=64,
|
| 1474 |
+
# # # # # progress=progress,
|
| 1475 |
+
# # # # # desc="Computing embeddings for Dataset 1",
|
| 1476 |
+
# # # # # )
|
| 1477 |
+
|
| 1478 |
+
# # # # # Deduplicate
|
| 1479 |
+
# # # # status = "Deduplicating embeddings..."
|
| 1480 |
+
# # # # yield status, ""
|
| 1481 |
+
# # # # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 1482 |
+
# # # # embedding_matrix, threshold, progress=progress
|
| 1483 |
+
# # # # )
|
| 1484 |
+
|
| 1485 |
+
# # # # # Prepare the results
|
| 1486 |
+
# # # # num_duplicates = len(duplicate_to_original_mapping)
|
| 1487 |
+
# # # # num_total = len(texts)
|
| 1488 |
+
# # # # num_deduplicated = len(deduplicated_indices)
|
| 1489 |
+
|
| 1490 |
+
# # # # result_text = f"**Total documents:** {num_total}\n"
|
| 1491 |
+
# # # # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 1492 |
+
# # # # result_text += (
|
| 1493 |
+
# # # # f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 1494 |
+
# # # # )
|
| 1495 |
+
|
| 1496 |
+
# # # # # Show deduplicated examples
|
| 1497 |
+
# # # # if num_duplicates > 0:
|
| 1498 |
+
# # # # result_text += "**Examples of duplicates found:**\n\n"
|
| 1499 |
+
# # # # num_examples = min(5, num_duplicates)
|
| 1500 |
+
# # # # for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 1501 |
+
# # # # original_text = texts[original_idx]
|
| 1502 |
+
# # # # duplicate_text = texts[duplicate_idx]
|
| 1503 |
+
# # # # differences = display_word_differences(original_text, duplicate_text)
|
| 1504 |
+
# # # # result_text += f"**Original text:**\n{original_text}\n\n"
|
| 1505 |
+
# # # # result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 1506 |
+
# # # # result_text += f"**Differences:**\n{differences}\n"
|
| 1507 |
+
# # # # result_text += "-" * 50 + "\n\n"
|
| 1508 |
+
# # # # else:
|
| 1509 |
+
# # # # result_text += "No duplicates found."
|
| 1510 |
+
|
| 1511 |
+
# # # # # Final status
|
| 1512 |
+
# # # # status = "Deduplication completed."
|
| 1513 |
+
# # # # yield status, result_text
|
| 1514 |
+
|
| 1515 |
+
# # # # elif deduplication_type == "Cross-dataset":
|
| 1516 |
+
# # # # # Similar code for cross-dataset deduplication
|
| 1517 |
+
# # # # # Load Dataset 1
|
| 1518 |
+
# # # # status = "Loading Dataset 1..."
|
| 1519 |
+
# # # # yield status, ""
|
| 1520 |
+
# # # # if (
|
| 1521 |
+
# # # # dataset1_name == default_dataset1_name
|
| 1522 |
+
# # # # and dataset1_split == default_dataset1_split
|
| 1523 |
+
# # # # ):
|
| 1524 |
+
# # # # ds1 = ds_default1
|
| 1525 |
+
# # # # else:
|
| 1526 |
+
# # # # ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 1527 |
+
|
| 1528 |
+
# # # # # Load Dataset 2
|
| 1529 |
+
# # # # status = "Loading Dataset 2..."
|
| 1530 |
+
# # # # yield status, ""
|
| 1531 |
+
# # # # if (
|
| 1532 |
+
# # # # dataset2_name == default_dataset2_name
|
| 1533 |
+
# # # # and dataset2_split == default_dataset2_split
|
| 1534 |
+
# # # # ):
|
| 1535 |
+
# # # # ds2 = ds_default2
|
| 1536 |
+
# # # # else:
|
| 1537 |
+
# # # # ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 1538 |
+
|
| 1539 |
+
# # # # # Extract texts from Dataset 1
|
| 1540 |
+
# # # # status = "Extracting texts from Dataset 1..."
|
| 1541 |
+
# # # # yield status, ""
|
| 1542 |
+
# # # # texts1 = [example[dataset1_text_column] for example in ds1]
|
| 1543 |
+
|
| 1544 |
+
# # # # # Extract texts from Dataset 2
|
| 1545 |
+
# # # # status = "Extracting texts from Dataset 2..."
|
| 1546 |
+
# # # # yield status, ""
|
| 1547 |
+
# # # # texts2 = [example[dataset2_text_column] for example in ds2]
|
| 1548 |
+
|
| 1549 |
+
# # # # # Compute embeddings for Dataset 1
|
| 1550 |
+
# # # # status = "Computing embeddings for Dataset 1..."
|
| 1551 |
+
# # # # yield status, ""
|
| 1552 |
+
# # # # embedding_matrix1 = compute_embeddings(
|
| 1553 |
+
# # # # texts1,
|
| 1554 |
+
# # # # batch_size=64,
|
| 1555 |
+
# # # # progress=progress,
|
| 1556 |
+
# # # # desc="Computing embeddings for Dataset 1",
|
| 1557 |
+
# # # # )
|
| 1558 |
+
|
| 1559 |
+
# # # # # Compute embeddings for Dataset 2
|
| 1560 |
+
# # # # status = "Computing embeddings for Dataset 2..."
|
| 1561 |
+
# # # # yield status, ""
|
| 1562 |
+
# # # # embedding_matrix2 = compute_embeddings(
|
| 1563 |
+
# # # # texts2,
|
| 1564 |
+
# # # # batch_size=64,
|
| 1565 |
+
# # # # progress=progress,
|
| 1566 |
+
# # # # desc="Computing embeddings for Dataset 2",
|
| 1567 |
+
# # # # )
|
| 1568 |
+
|
| 1569 |
+
# # # # # Deduplicate across datasets
|
| 1570 |
+
# # # # status = "Deduplicating embeddings across datasets..."
|
| 1571 |
+
# # # # yield status, ""
|
| 1572 |
+
# # # # duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 1573 |
+
# # # # embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 1574 |
+
# # # # )
|
| 1575 |
+
|
| 1576 |
+
# # # # num_duplicates = len(duplicate_indices_in_ds2)
|
| 1577 |
+
# # # # num_total_ds2 = len(texts2)
|
| 1578 |
+
# # # # num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 1579 |
+
|
| 1580 |
+
# # # # result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 1581 |
+
# # # # result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 1582 |
+
# # # # result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 1583 |
+
|
| 1584 |
+
# # # # # Show deduplicated examples
|
| 1585 |
+
# # # # if num_duplicates > 0:
|
| 1586 |
+
# # # # result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 1587 |
+
# # # # num_examples = min(5, num_duplicates)
|
| 1588 |
+
# # # # for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 1589 |
+
# # # # original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 1590 |
+
# # # # original_text = texts1[original_idx]
|
| 1591 |
+
# # # # duplicate_text = texts2[duplicate_idx]
|
| 1592 |
+
# # # # differences = display_word_differences(original_text, duplicate_text)
|
| 1593 |
+
# # # # result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 1594 |
+
# # # # result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 1595 |
+
# # # # result_text += f"**Differences:**\n{differences}\n"
|
| 1596 |
+
# # # # result_text += "-" * 50 + "\n\n"
|
| 1597 |
+
# # # # else:
|
| 1598 |
+
# # # # result_text += "No duplicates found."
|
| 1599 |
+
|
| 1600 |
+
# # # # # Final status
|
| 1601 |
+
# # # # status = "Deduplication completed."
|
| 1602 |
+
# # # # yield status, result_text
|
| 1603 |
+
|
| 1604 |
+
# # # # except Exception as e:
|
| 1605 |
+
# # # # yield f"An error occurred: {e}", ""
|
| 1606 |
+
# # # # raise e
|
| 1607 |
+
|
| 1608 |
+
# # # # def deduplicate_across_datasets(
|
| 1609 |
+
# # # # embedding_matrix_1: np.ndarray,
|
| 1610 |
+
# # # # embedding_matrix_2: np.ndarray,
|
| 1611 |
+
# # # # threshold: float,
|
| 1612 |
+
# # # # batch_size: int = 1024,
|
| 1613 |
+
# # # # progress=None
|
| 1614 |
+
# # # # ) -> tuple[list[int], dict[int, int]]:
|
| 1615 |
+
# # # # # Building the index from Dataset 1
|
| 1616 |
+
# # # # progress(0, desc="Building search index from Dataset 1...")
|
| 1617 |
+
# # # # reach = Reach(
|
| 1618 |
+
# # # # vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
|
| 1619 |
+
# # # # )
|
| 1620 |
+
|
| 1621 |
+
# # # # duplicate_indices_in_test = []
|
| 1622 |
+
# # # # duplicate_to_original_mapping = {}
|
| 1623 |
+
|
| 1624 |
+
# # # # # Finding nearest neighbors between datasets
|
| 1625 |
+
# # # # progress(0, desc="Finding nearest neighbors between datasets...")
|
| 1626 |
+
# # # # results = reach.nearest_neighbor_threshold(
|
| 1627 |
+
# # # # embedding_matrix_2,
|
| 1628 |
+
# # # # threshold=threshold,
|
| 1629 |
+
# # # # batch_size=batch_size,
|
| 1630 |
+
# # # # show_progressbar=False, # Disable internal progress bar
|
| 1631 |
+
# # # # )
|
| 1632 |
+
|
| 1633 |
+
# # # # total_items = len(embedding_matrix_2)
|
| 1634 |
+
# # # # # Processing duplicates with a progress bar
|
| 1635 |
+
# # # # for i, similar_items in enumerate(
|
| 1636 |
+
# # # # progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
|
| 1637 |
+
# # # # ):
|
| 1638 |
+
# # # # similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 1639 |
+
|
| 1640 |
+
# # # # if similar_indices:
|
| 1641 |
+
# # # # duplicate_indices_in_test.append(i)
|
| 1642 |
+
# # # # duplicate_to_original_mapping[i] = similar_indices[0]
|
| 1643 |
+
|
| 1644 |
+
# # # # return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 1645 |
+
|
| 1646 |
+
# # # # # Adjust the height of the status_output component using custom CSS
|
| 1647 |
+
# # # # with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
|
| 1648 |
+
# # # # gr.Markdown("# Semantic Deduplication")
|
| 1649 |
+
|
| 1650 |
+
# # # # deduplication_type = gr.Radio(
|
| 1651 |
+
# # # # choices=["Single dataset", "Cross-dataset"],
|
| 1652 |
+
# # # # label="Deduplication Type",
|
| 1653 |
+
# # # # value="Single dataset",
|
| 1654 |
+
# # # # )
|
| 1655 |
+
|
| 1656 |
+
# # # # with gr.Row():
|
| 1657 |
+
# # # # dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
|
| 1658 |
+
# # # # dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
| 1659 |
+
# # # # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 1660 |
+
|
| 1661 |
+
# # # # dataset2_inputs = gr.Column(visible=False)
|
| 1662 |
+
# # # # with dataset2_inputs:
|
| 1663 |
+
# # # # gr.Markdown("### Dataset 2")
|
| 1664 |
+
# # # # with gr.Row():
|
| 1665 |
+
# # # # dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
|
| 1666 |
+
# # # # dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 1667 |
+
# # # # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 1668 |
+
|
| 1669 |
+
# # # # threshold = gr.Slider(
|
| 1670 |
+
# # # # minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
|
| 1671 |
+
# # # # )
|
| 1672 |
+
|
| 1673 |
+
# # # # compute_button = gr.Button("Compute")
|
| 1674 |
+
|
| 1675 |
+
# # # # # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
|
| 1676 |
+
# # # # status_output = gr.Markdown(elem_id="status_output")
|
| 1677 |
+
# # # # result_output = gr.Markdown()
|
| 1678 |
+
|
| 1679 |
+
# # # # # Function to update the visibility of dataset2_inputs
|
| 1680 |
+
# # # # def update_visibility(deduplication_type_value):
|
| 1681 |
+
# # # # if deduplication_type_value == "Cross-dataset":
|
| 1682 |
+
# # # # return gr.update(visible=True)
|
| 1683 |
+
# # # # else:
|
| 1684 |
+
# # # # return gr.update(visible=False)
|
| 1685 |
+
|
| 1686 |
+
# # # # deduplication_type.change(
|
| 1687 |
+
# # # # update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
|
| 1688 |
+
# # # # )
|
| 1689 |
+
|
| 1690 |
+
# # # # compute_button.click(
|
| 1691 |
+
# # # # fn=perform_deduplication,
|
| 1692 |
+
# # # # inputs=[
|
| 1693 |
+
# # # # deduplication_type,
|
| 1694 |
+
# # # # dataset1_name,
|
| 1695 |
+
# # # # dataset1_split,
|
| 1696 |
+
# # # # dataset1_text_column,
|
| 1697 |
+
# # # # dataset2_name,
|
| 1698 |
+
# # # # dataset2_split,
|
| 1699 |
+
# # # # dataset2_text_column,
|
| 1700 |
+
# # # # threshold,
|
| 1701 |
+
# # # # ],
|
| 1702 |
+
# # # # outputs=[status_output, result_output],
|
| 1703 |
+
# # # # )
|
| 1704 |
+
|
| 1705 |
+
# # # # demo.launch()
|