Practica2 / app.py
mirari's picture
Create app.py
27bfbc7
raw
history blame
451 Bytes
from icevision.all import *
import gradio as gr
learn = load_learner('fasterRCNNKangaroo.pth')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128,128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['00001.jpg','00002.jpg']).launch(share=False)