from icevision.all import * import gradio as gr state_dict = torch.load('fasterRCNNKangaroo.pth', map_location=torch.device('cpu')) model.load_state_dict(state_dict) labels = learn.dls.vocab def predict(img): img = PILImage.create(img) infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()]) pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5) return pred_dict gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128,128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['00001.jpg','00002.jpg']).launch(share=False)