Spaces:
Sleeping
Sleeping
File size: 26,965 Bytes
ceadb69 2d6f27e ceadb69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
import gradio as gr
import plotly.graph_objects as go
import numpy as np
import pandas as pd
# Import mendeleev for comprehensive periodic table data
try:
from mendeleev.fetch import fetch_table
MENDELEEV_AVAILABLE = True
except ImportError:
print("mendeleev library not found. Please install it using: pip install mendeleev")
MENDELEEV_AVAILABLE = False
def load_periodic_data():
"""Load comprehensive periodic table data using mendeleev library"""
if not MENDELEEV_AVAILABLE:
return pd.DataFrame(), []
try:
# Get the full periodic table with all properties
df = fetch_table('elements')
# Get available columns and filter out non-numeric ones
numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
# Remove non-property columns
exclude_cols = ['atomic_number', 'period', 'group_id', 'mass_number', 'mass', 'id']
numeric_columns = [col for col in numeric_columns if col not in exclude_cols]
return df, numeric_columns
except Exception as e:
print(f"Error loading mendeleev data: {e}")
return pd.DataFrame(), []
# Load data
elements_data, available_properties = load_periodic_data()
def is_continuous_correlative_property(prop_name, df):
"""Determine if a property is continuous AND correlative with atomic number (should be excluded from dropdown)"""
# Properties that are both continuous and strongly correlative with atomic number
continuous_correlative_properties = {
'atomic_weight', 'atomic_mass', 'mass', 'weight'
}
# Check if property name contains continuous correlative indicators
for cont_prop in continuous_correlative_properties:
if cont_prop in prop_name.lower():
return True
# Check if property is highly correlated with atomic number
if prop_name in df.columns and 'atomic_number' in df.columns:
data = df[[prop_name, 'atomic_number']].dropna()
if len(data) > 20:
correlation = data[prop_name].corr(data['atomic_number'])
# High correlation (>0.9) indicates strong relationship with atomic number
# Combined with high uniqueness indicates continuous correlative property
unique_ratio = len(data[prop_name].unique()) / len(data[prop_name])
if abs(correlation) > 0.9 and unique_ratio > 0.8:
return True
return False
def is_integer_property(prop_name, df):
"""Determine if a property should be treated as integer"""
integer_properties = {
'period', 'group_id', 'group', 'block_number', 'neutrons',
'electrons', 'protons', 'valence', 'oxidation_states'
}
# Check explicit integer properties
for int_prop in integer_properties:
if int_prop in prop_name.lower():
return True
# Check if all non-null values are integers
if prop_name in df.columns:
data = df[prop_name].dropna()
if len(data) > 5:
# Check if all values are close to integers
are_integers = np.allclose(data, np.round(data), rtol=0, atol=1e-10)
return are_integers
return False
def calculate_color_variance(data, use_log=False):
"""Calculate the effective color variance for a given scaling approach"""
if len(data) < 3:
return 0
if use_log:
# For log scale, need positive values
positive_data = data[data > 0]
if len(positive_data) < 3:
return 0
scaled_data = np.log10(positive_data)
else:
scaled_data = data
# Normalize to 0-1 range (simulating color mapping)
min_val, max_val = scaled_data.min(), scaled_data.max()
if max_val == min_val:
return 0
normalized = (scaled_data - min_val) / (max_val - min_val)
# Calculate effective variance - higher means better color distribution
return np.var(normalized)
def requires_log_scale(prop_name, df):
"""Improved heuristic to determine if logarithmic scale maximizes color palette utilization"""
if prop_name not in df.columns:
return False
data = df[prop_name].dropna()
if len(data) < 10:
return False
# Must have all positive values for log scale
if data.min() <= 0:
return False
# Properties that typically benefit from log scale (abundance-related)
log_scale_indicators = [
'abundance', 'concentration', 'ppm', 'ppb', 'radioactive',
'half_life', 'decay', 'isotope_abundance'
]
for indicator in log_scale_indicators:
if indicator in prop_name.lower():
return True
# Calculate color variance for both approaches
linear_variance = calculate_color_variance(data, use_log=False)
log_variance = calculate_color_variance(data, use_log=True)
# Use log scale if it provides significantly better color distribution
# Require at least 50% improvement to switch to log scale
improvement_threshold = 1.5
# Additional criteria for when log scale is beneficial:
# 1. Log scale provides better variance AND
# 2. Data has wide range (>2 orders of magnitude) OR high skewness
range_ratio = data.max() / data.min()
data_skewness = abs(data.skew()) if hasattr(data, 'skew') else 0
use_log_conditions = [
log_variance > linear_variance * improvement_threshold, # Log provides better color distribution
range_ratio > 100 or data_skewness > 2, # Data is suitable for log scaling
len(data) > 20 # Sufficient data points
]
return all(use_log_conditions)
def get_element_series_description(df):
"""Get element series description based on available data"""
# Try to find series-related columns
series_columns = []
for col in df.columns:
if any(term in col.lower() for term in ['series', 'group_name', 'category', 'family', 'type']):
series_columns.append(col)
# Prefer columns with descriptive names
if 'series' in df.columns:
return 'series'
elif 'group_name' in df.columns:
return 'group_name'
elif series_columns:
return series_columns[0]
# If no series column, try to create one from period and group
if 'period' in df.columns and 'group_id' in df.columns:
return 'period' # Fallback to period
return None
def create_element_series_mapping(df):
"""Create a mapping of element series if not available"""
if 'series' in df.columns:
return 'Element Series', 'series'
# Try other descriptive columns
descriptive_columns = {
'group_name': 'Element Group',
'category': 'Element Category',
'family': 'Element Family',
'type': 'Element Type'
}
for col, label in descriptive_columns.items():
if col in df.columns and df[col].notna().sum() > 50:
return label, col
# If no good series data, use period as fallback
if 'period' in df.columns:
return 'Period', 'period'
return None, None
def filter_relevant_properties(df, available_props):
"""Filter properties to keep only relevant ones with sufficient data, excluding continuous correlative properties"""
# Define curated properties with quality thresholds (these stay for internal use)
curated_properties = {
'atomic_weight': {'label': 'Atomic Mass (u)', 'min_data': 100, 'log_scale': False},
'density': {'label': 'Density (g/cm³)', 'min_data': 50, 'log_scale': False},
'en_pauling': {'label': 'Electronegativity (Pauling)', 'min_data': 70, 'log_scale': False},
'atomic_radius': {'label': 'Atomic Radius (pm)', 'min_data': 50, 'log_scale': False},
'vdw_radius': {'label': 'Van der Waals Radius (pm)', 'min_data': 40, 'log_scale': False},
'covalent_radius': {'label': 'Covalent Radius (pm)', 'min_data': 40, 'log_scale': False},
'ionenergy': {'label': 'First Ionization Energy (eV)', 'min_data': 80, 'log_scale': False},
'electron_affinity': {'label': 'Electron Affinity (eV)', 'min_data': 40, 'log_scale': False},
'melting_point': {'label': 'Melting Point (K)', 'min_data': 70, 'log_scale': False},
'boiling_point': {'label': 'Boiling Point (K)', 'min_data': 60, 'log_scale': False},
'atomic_volume': {'label': 'Atomic Volume (cm³/mol)', 'min_data': 40, 'log_scale': False},
'thermal_conductivity': {'label': 'Thermal Conductivity (W/mK)', 'min_data': 30, 'log_scale': False},
'c6': {'label': 'C6 Dispersion Coefficient', 'min_data': 30, 'log_scale': False},
'dipole_polarizability': {'label': 'Dipole Polarizability', 'min_data': 30, 'log_scale': False},
'period': {'label': 'Period', 'min_data': 100, 'log_scale': False},
'group_id': {'label': 'Group', 'min_data': 100, 'log_scale': False},
}
# Check which properties are available and have sufficient data
valid_properties = {}
dropdown_properties = {} # Separate dict for dropdown (excluding continuous correlative)
property_info = {}
# First, try to add element series as the default
default_label, default_property = create_element_series_mapping(df)
if default_property and default_property in df.columns:
non_null_count = df[default_property].notna().sum()
if non_null_count >= 50: # Lower threshold for series data
valid_properties[default_label] = default_property
dropdown_properties[default_label] = default_property
property_info[default_property] = {
'label': default_label,
'min_data': 50,
'log_scale': False,
'is_default': True
}
for prop_name, prop_config in curated_properties.items():
if prop_name in available_props:
# Count non-null values
non_null_count = df[prop_name].notna().sum()
if non_null_count >= prop_config['min_data']:
valid_properties[prop_config['label']] = prop_name
property_info[prop_name] = prop_config
# Only add to dropdown if not continuous and correlative
if not is_continuous_correlative_property(prop_name, df):
dropdown_properties[prop_config['label']] = prop_name
# Add any other properties with very good data coverage (>80 elements)
for prop in available_props:
if prop not in curated_properties:
non_null_count = df[prop].notna().sum()
if non_null_count > 80: # High threshold for uncurated properties
display_name = prop.replace('_', ' ').title()
log_scale = requires_log_scale(prop, df)
valid_properties[display_name] = prop
property_info[prop] = {'label': display_name, 'min_data': 80, 'log_scale': log_scale}
# Only add to dropdown if not continuous and correlative
if not is_continuous_correlative_property(prop, df):
dropdown_properties[display_name] = prop
return valid_properties, dropdown_properties, property_info
# Get valid properties
valid_properties, dropdown_properties, property_info = filter_relevant_properties(elements_data, available_properties)
def get_portland_like_colorscale(use_log=False):
"""Get Portland or Portland-like colorscale"""
# Portland is great - let's use variations of it
if use_log:
# For log scale, use a slightly adjusted Portland to handle the wider dynamic range
return 'Portland'
else:
return 'Portland'
def should_use_log_scale(property_name, df):
"""Determine if logarithmic scale should be used based on data distribution"""
if property_name not in df.columns:
return False
# Check if explicitly configured
if property_name in property_info:
configured_log = property_info[property_name].get('log_scale', False)
if configured_log:
return True
# Use improved heuristic
return requires_log_scale(property_name, df)
# Standard periodic table positions
ELEMENT_POSITIONS = {
# Period 1
1: (1, 1), 2: (18, 1),
# Period 2
3: (1, 2), 4: (2, 2), 5: (13, 2), 6: (14, 2), 7: (15, 2), 8: (16, 2), 9: (17, 2), 10: (18, 2),
# Period 3
11: (1, 3), 12: (2, 3), 13: (13, 3), 14: (14, 3), 15: (15, 3), 16: (16, 3), 17: (17, 3), 18: (18, 3),
# Period 4
19: (1, 4), 20: (2, 4), 21: (3, 4), 22: (4, 4), 23: (5, 4), 24: (6, 4), 25: (7, 4), 26: (8, 4),
27: (9, 4), 28: (10, 4), 29: (11, 4), 30: (12, 4), 31: (13, 4), 32: (14, 4), 33: (15, 4), 34: (16, 4), 35: (17, 4), 36: (18, 4),
# Period 5
37: (1, 5), 38: (2, 5), 39: (3, 5), 40: (4, 5), 41: (5, 5), 42: (6, 5), 43: (7, 5), 44: (8, 5),
45: (9, 5), 46: (10, 5), 47: (11, 5), 48: (12, 5), 49: (13, 5), 50: (14, 5), 51: (15, 5), 52: (16, 5), 53: (17, 5), 54: (18, 5),
# Period 6
55: (1, 6), 56: (2, 6),
# Lanthanides (period 6 continued)
57: (4, 9), 58: (5, 9), 59: (6, 9), 60: (7, 9), 61: (8, 9), 62: (9, 9), 63: (10, 9), 64: (11, 9),
65: (12, 9), 66: (13, 9), 67: (14, 9), 68: (15, 9), 69: (16, 9), 70: (17, 9), 71: (18, 9),
# Period 6 continued
72: (4, 6), 73: (5, 6), 74: (6, 6), 75: (7, 6), 76: (8, 6), 77: (9, 6), 78: (10, 6), 79: (11, 6),
80: (12, 6), 81: (13, 6), 82: (14, 6), 83: (15, 6), 84: (16, 6), 85: (17, 6), 86: (18, 6),
# Period 7
87: (1, 7), 88: (2, 7),
# Actinides (period 7 continued)
89: (4, 10), 90: (5, 10), 91: (6, 10), 92: (7, 10), 93: (8, 10), 94: (9, 10), 95: (10, 10), 96: (11, 10),
97: (12, 10), 98: (13, 10), 99: (14, 10), 100: (15, 10), 101: (16, 10), 102: (17, 10), 103: (18, 10),
# Period 7 continued
104: (4, 7), 105: (5, 7), 106: (6, 7), 107: (7, 7), 108: (8, 7), 109: (9, 7), 110: (10, 7), 111: (11, 7),
112: (12, 7), 113: (13, 7), 114: (14, 7), 115: (15, 7), 116: (16, 7), 117: (17, 7), 118: (18, 7)
}
def get_electronic_configuration(element):
"""Extract electronic configuration from element data"""
# Try different possible column names for electronic configuration
config_columns = ['electronic_configuration', 'electron_configuration', 'econf', 'ec']
for col in config_columns:
if col in element.index and pd.notna(element.get(col)):
return str(element[col])
# If no explicit electronic configuration column, try to construct it from other data
# This is a fallback - the mendeleev library should have this data
return None
def create_hover_text(element, selected_property, original_value, display_value):
"""Create detailed hover text for an element"""
def format_value(value, unit="", is_integer=False):
if pd.isna(value):
return "N/A"
if isinstance(value, (int, float)):
if is_integer:
return f"{int(round(value))} {unit}".strip()
elif abs(value) >= 1000:
return f"{value:.2e} {unit}".strip()
elif abs(value) >= 10:
return f"{value:.2f} {unit}".strip()
else:
return f"{value:.3f} {unit}".strip()
return str(value)
# Get property info
prop_config = property_info.get(selected_property, {})
prop_label = prop_config.get('label', selected_property.replace('_', ' ').title())
# Determine if this is an integer property
is_int_prop = is_integer_property(selected_property, elements_data)
# Determine units based on property name
if 'density' in selected_property.lower():
unit = "g/cm³"
elif 'electronegativity' in selected_property.lower():
unit = ""
elif 'radius' in selected_property.lower():
unit = "pm"
elif 'energy' in selected_property.lower() or 'ionization' in selected_property.lower():
unit = "eV"
elif 'affinity' in selected_property.lower():
unit = "eV"
elif 'point' in selected_property.lower() or 'temperature' in selected_property.lower():
unit = "K"
elif 'weight' in selected_property.lower() or 'mass' in selected_property.lower():
unit = "u"
elif 'volume' in selected_property.lower():
unit = "cm³/mol"
elif 'conductivity' in selected_property.lower():
unit = "W/mK"
else:
unit = ""
current_str = format_value(original_value, unit, is_int_prop)
# Build hover text with key properties
hover_lines = [
f"<b>{element.get('name', 'N/A')} ({element.get('symbol', 'N/A')})</b>",
f"<b>{prop_label}: {current_str}</b>",
"", # Empty line for separation
f"Atomic Number: {element.get('atomic_number', 'N/A')}",
]
# Add electronic configuration if available
electronic_config = get_electronic_configuration(element)
if electronic_config:
hover_lines.append(f"Electronic Configuration: {electronic_config}")
# Add key properties if available
key_properties = [
('atomic_weight', 'Atomic Weight', 'u', False),
('period', 'Period', '', True),
('group_id', 'Group', '', True),
('block', 'Block', '', False),
('en_pauling', 'Electronegativity', '', False),
('atomic_radius', 'Atomic Radius', 'pm', False),
('ionenergy', 'Ionization Energy', 'eV', False),
('melting_point', 'Melting Point', 'K', False),
('boiling_point', 'Boiling Point', 'K', False),
('density', 'Density', 'g/cm³', False),
]
for prop_name, display_name, prop_unit, is_int in key_properties:
if prop_name in element.index and pd.notna(element.get(prop_name)):
value_str = format_value(element[prop_name], prop_unit, is_int)
hover_lines.append(f"{display_name}: {value_str}")
return "<br>".join(hover_lines)
def create_periodic_table_figure(selected_property_label):
"""Create the periodic table figure for the given property"""
if not MENDELEEV_AVAILABLE or elements_data.empty:
fig = go.Figure()
fig.add_annotation(
text="Mendeleev library not available. Please install: pip install mendeleev",
showarrow=False,
font=dict(size=16)
)
return fig
# Get the actual property name from the label
selected_property = valid_properties.get(selected_property_label)
if not selected_property:
fig = go.Figure()
fig.add_annotation(
text=f"Property '{selected_property_label}' not available",
showarrow=False,
font=dict(size=16)
)
return fig
# Filter out elements without the selected property
property_data = elements_data[selected_property].dropna()
if property_data.empty:
fig = go.Figure()
fig.add_annotation(
text=f"No data available for {selected_property_label}",
showarrow=False,
font=dict(size=16)
)
return fig
# Determine if we should use log scale
use_log = should_use_log_scale(selected_property, elements_data)
# Prepare data for visualization
if use_log:
# For log scale, we need positive values
positive_data = property_data[property_data > 0]
if positive_data.empty:
use_log = False
viz_data = property_data
min_value = property_data.min()
max_value = property_data.max()
else:
viz_data = np.log10(positive_data)
min_value = viz_data.min()
max_value = viz_data.max()
else:
viz_data = property_data
min_value = property_data.min()
max_value = property_data.max()
# Initialize data lists
hover_texts = []
element_symbols = []
atomic_numbers = []
x_positions = []
y_positions = []
element_values = []
# Process each element
for _, element in elements_data.iterrows():
atomic_num = element['atomic_number']
# Skip elements without position data
if atomic_num not in ELEMENT_POSITIONS:
continue
x_pos, y_pos = ELEMENT_POSITIONS[atomic_num]
x_positions.append(x_pos)
y_positions.append(11 - y_pos) # Invert y-axis for correct table layout
element_symbols.append(element['symbol'])
atomic_numbers.append(atomic_num)
# Get property value
original_value = element[selected_property]
if pd.notna(original_value):
if use_log and original_value > 0:
display_value = np.log10(original_value)
else:
display_value = original_value
else:
display_value = np.nan
element_values.append(display_value)
# Create comprehensive hover text
hover_text = create_hover_text(element, selected_property, original_value, display_value)
hover_texts.append(hover_text)
# Create the figure
fig = go.Figure()
# Add scatter plot
fig.add_trace(go.Scatter(
x=x_positions,
y=y_positions,
mode='markers+text',
text=element_symbols,
hoverinfo='text',
hovertext=hover_texts,
textfont=dict(
family="Arial, sans-serif",
size=14,
color="white",
weight="bold",
),
hoverlabel=dict(
bgcolor="rgba(255,255,255,0.95)",
font_size=12,
font_family="Arial, sans-serif",
bordercolor="black"
),
marker=dict(
symbol='square',
color=element_values,
size=45,
colorscale=get_portland_like_colorscale(use_log),
cmin=min_value,
cmax=max_value,
colorbar=dict(
title=f"{selected_property_label}{'<br>(log scale)' if use_log else ''}",
thickness=20,
x=1.02
),
showscale=True,
line=dict(color='black', width=1)
)
))
# Add atomic number annotations
for i in range(len(x_positions)):
fig.add_annotation(
x=x_positions[i],
y=y_positions[i] + 0.3,
text=str(atomic_numbers[i]),
showarrow=False,
font=dict(
family="Arial, sans-serif",
size=8,
color="white",
weight="bold",
)
)
# Add lanthanide and actinide labels
fig.add_annotation(x=3, y=2, text="Lanthanides", showarrow=False,
font=dict(size=10, weight="bold"))
fig.add_annotation(x=3, y=1, text="Actinides", showarrow=False,
font=dict(size=10, weight="bold"))
# Update layout
title_text = f'<b>Periodic Table by {selected_property_label}</b>'
if use_log:
title_text += '<br><span style="font-size:14px;">(Logarithmic Color Scale)</span>'
fig.update_layout(
title=dict(
text=title_text,
x=0.5,
font=dict(size=24)
),
xaxis=dict(
range=[0, 19],
showgrid=False,
zeroline=False,
showticklabels=False,
visible=False
),
yaxis=dict(
range=[0, 12],
showgrid=False,
zeroline=False,
showticklabels=False,
visible=False
),
plot_bgcolor='white',
paper_bgcolor='#f8f9fa',
width=1480,
height=800,
margin=dict(l=20, r=100, t=100, b=20)
)
return fig
# Create Gradio interface
def create_gradio_app():
"""Create the Gradio interface"""
if not MENDELEEV_AVAILABLE or not dropdown_properties:
def error_interface():
return "❌ Mendeleev library not available or no valid properties found. Please install: pip install mendeleev"
return gr.Interface(
fn=error_interface,
inputs=[],
outputs=gr.Textbox(label="Error"),
title="Periodic Table Dashboard - Error"
)
# Get property options for dropdown (excluding continuous correlative properties)
property_options = list(dropdown_properties.keys())
# Set default to element series if available, otherwise first property
default_property = None
for label, prop_name in dropdown_properties.items():
if property_info.get(prop_name, {}).get('is_default', False):
default_property = label
break
if not default_property and property_options:
default_property = property_options[0]
with gr.Blocks(title="Interactive Periodic Table", theme=gr.themes.Soft()) as app:
gr.Markdown("# 🧪 Interactive Periodic Table")
with gr.Row():
with gr.Column(scale=1):
property_dropdown = gr.Dropdown(
choices=property_options,
value=default_property,
label="Select Property to Colourize",
)
with gr.Row():
plot_output = gr.Plot(show_label=False)
with gr.Row():
gr.Markdown(f"""
**🔬 Data Source:** [Mendeleev Library](https://mendeleev.readthedocs.io/)
""")
# Update plot when dropdown changes
property_dropdown.change(
fn=create_periodic_table_figure,
inputs=[property_dropdown],
outputs=[plot_output]
)
# Initialize with first property
app.load(
fn=create_periodic_table_figure,
inputs=[property_dropdown],
outputs=[plot_output]
)
return app
# Create and run the app
if __name__ == "__main__":
print(f"🚀 Starting Gradio app with {len(dropdown_properties)} properties (excluding continuous correlative)")
if dropdown_properties:
print("📋 Available dropdown properties:")
for label, prop_name in dropdown_properties.items():
log_note = " (log scale)" if should_use_log_scale(prop_name, elements_data) else ""
int_note = " (integer)" if is_integer_property(prop_name, elements_data) else ""
default_note = " (DEFAULT)" if property_info.get(prop_name, {}).get('is_default', False) else ""
data_count = elements_data[prop_name].notna().sum()
print(f" • {label}: {data_count} elements{log_note}{int_note}{default_note}")
print(f"\n📋 Total valid properties (including continuous correlative): {len(valid_properties)}")
app = create_gradio_app()
app.launch()
|