File size: 26,965 Bytes
ceadb69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6f27e
ceadb69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
import gradio as gr
import plotly.graph_objects as go
import numpy as np
import pandas as pd

# Import mendeleev for comprehensive periodic table data
try:
    from mendeleev.fetch import fetch_table
    MENDELEEV_AVAILABLE = True
except ImportError:
    print("mendeleev library not found. Please install it using: pip install mendeleev")
    MENDELEEV_AVAILABLE = False

def load_periodic_data():
    """Load comprehensive periodic table data using mendeleev library"""
    if not MENDELEEV_AVAILABLE:
        return pd.DataFrame(), []
    
    try:
        # Get the full periodic table with all properties
        df = fetch_table('elements')
        
        # Get available columns and filter out non-numeric ones
        numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
        
        # Remove non-property columns
        exclude_cols = ['atomic_number', 'period', 'group_id', 'mass_number', 'mass', 'id']
        numeric_columns = [col for col in numeric_columns if col not in exclude_cols]
        
        return df, numeric_columns
    except Exception as e:
        print(f"Error loading mendeleev data: {e}")
        return pd.DataFrame(), []

# Load data
elements_data, available_properties = load_periodic_data()

def is_continuous_correlative_property(prop_name, df):
    """Determine if a property is continuous AND correlative with atomic number (should be excluded from dropdown)"""
    # Properties that are both continuous and strongly correlative with atomic number
    continuous_correlative_properties = {
        'atomic_weight', 'atomic_mass', 'mass', 'weight'
    }
    
    # Check if property name contains continuous correlative indicators
    for cont_prop in continuous_correlative_properties:
        if cont_prop in prop_name.lower():
            return True
    
    # Check if property is highly correlated with atomic number
    if prop_name in df.columns and 'atomic_number' in df.columns:
        data = df[[prop_name, 'atomic_number']].dropna()
        if len(data) > 20:
            correlation = data[prop_name].corr(data['atomic_number'])
            # High correlation (>0.9) indicates strong relationship with atomic number
            # Combined with high uniqueness indicates continuous correlative property
            unique_ratio = len(data[prop_name].unique()) / len(data[prop_name])
            if abs(correlation) > 0.9 and unique_ratio > 0.8:
                return True
    
    return False

def is_integer_property(prop_name, df):
    """Determine if a property should be treated as integer"""
    integer_properties = {
        'period', 'group_id', 'group', 'block_number', 'neutrons',
        'electrons', 'protons', 'valence', 'oxidation_states'
    }
    
    # Check explicit integer properties
    for int_prop in integer_properties:
        if int_prop in prop_name.lower():
            return True
    
    # Check if all non-null values are integers
    if prop_name in df.columns:
        data = df[prop_name].dropna()
        if len(data) > 5:
            # Check if all values are close to integers
            are_integers = np.allclose(data, np.round(data), rtol=0, atol=1e-10)
            return are_integers
    
    return False

def calculate_color_variance(data, use_log=False):
    """Calculate the effective color variance for a given scaling approach"""
    if len(data) < 3:
        return 0
    
    if use_log:
        # For log scale, need positive values
        positive_data = data[data > 0]
        if len(positive_data) < 3:
            return 0
        scaled_data = np.log10(positive_data)
    else:
        scaled_data = data
    
    # Normalize to 0-1 range (simulating color mapping)
    min_val, max_val = scaled_data.min(), scaled_data.max()
    if max_val == min_val:
        return 0
    
    normalized = (scaled_data - min_val) / (max_val - min_val)
    
    # Calculate effective variance - higher means better color distribution
    return np.var(normalized)

def requires_log_scale(prop_name, df):
    """Improved heuristic to determine if logarithmic scale maximizes color palette utilization"""
    if prop_name not in df.columns:
        return False
    
    data = df[prop_name].dropna()
    if len(data) < 10:
        return False
    
    # Must have all positive values for log scale
    if data.min() <= 0:
        return False
    
    # Properties that typically benefit from log scale (abundance-related)
    log_scale_indicators = [
        'abundance', 'concentration', 'ppm', 'ppb', 'radioactive',
        'half_life', 'decay', 'isotope_abundance'
    ]
    
    for indicator in log_scale_indicators:
        if indicator in prop_name.lower():
            return True
    
    # Calculate color variance for both approaches
    linear_variance = calculate_color_variance(data, use_log=False)
    log_variance = calculate_color_variance(data, use_log=True)
    
    # Use log scale if it provides significantly better color distribution
    # Require at least 50% improvement to switch to log scale
    improvement_threshold = 1.5
    
    # Additional criteria for when log scale is beneficial:
    # 1. Log scale provides better variance AND
    # 2. Data has wide range (>2 orders of magnitude) OR high skewness
    
    range_ratio = data.max() / data.min()
    data_skewness = abs(data.skew()) if hasattr(data, 'skew') else 0
    
    use_log_conditions = [
        log_variance > linear_variance * improvement_threshold,  # Log provides better color distribution
        range_ratio > 100 or data_skewness > 2,  # Data is suitable for log scaling
        len(data) > 20  # Sufficient data points
    ]
    
    return all(use_log_conditions)

def get_element_series_description(df):
    """Get element series description based on available data"""
    # Try to find series-related columns
    series_columns = []
    for col in df.columns:
        if any(term in col.lower() for term in ['series', 'group_name', 'category', 'family', 'type']):
            series_columns.append(col)
    
    # Prefer columns with descriptive names
    if 'series' in df.columns:
        return 'series'
    elif 'group_name' in df.columns:
        return 'group_name'
    elif series_columns:
        return series_columns[0]
    
    # If no series column, try to create one from period and group
    if 'period' in df.columns and 'group_id' in df.columns:
        return 'period'  # Fallback to period
    
    return None

def create_element_series_mapping(df):
    """Create a mapping of element series if not available"""
    if 'series' in df.columns:
        return 'Element Series', 'series'
    
    # Try other descriptive columns
    descriptive_columns = {
        'group_name': 'Element Group',
        'category': 'Element Category', 
        'family': 'Element Family',
        'type': 'Element Type'
    }
    
    for col, label in descriptive_columns.items():
        if col in df.columns and df[col].notna().sum() > 50:
            return label, col
    
    # If no good series data, use period as fallback
    if 'period' in df.columns:
        return 'Period', 'period'
    
    return None, None

def filter_relevant_properties(df, available_props):
    """Filter properties to keep only relevant ones with sufficient data, excluding continuous correlative properties"""
    
    # Define curated properties with quality thresholds (these stay for internal use)
    curated_properties = {
        'atomic_weight': {'label': 'Atomic Mass (u)', 'min_data': 100, 'log_scale': False},
        'density': {'label': 'Density (g/cm³)', 'min_data': 50, 'log_scale': False},
        'en_pauling': {'label': 'Electronegativity (Pauling)', 'min_data': 70, 'log_scale': False},
        'atomic_radius': {'label': 'Atomic Radius (pm)', 'min_data': 50, 'log_scale': False},
        'vdw_radius': {'label': 'Van der Waals Radius (pm)', 'min_data': 40, 'log_scale': False},
        'covalent_radius': {'label': 'Covalent Radius (pm)', 'min_data': 40, 'log_scale': False},
        'ionenergy': {'label': 'First Ionization Energy (eV)', 'min_data': 80, 'log_scale': False},
        'electron_affinity': {'label': 'Electron Affinity (eV)', 'min_data': 40, 'log_scale': False},
        'melting_point': {'label': 'Melting Point (K)', 'min_data': 70, 'log_scale': False},
        'boiling_point': {'label': 'Boiling Point (K)', 'min_data': 60, 'log_scale': False},
        'atomic_volume': {'label': 'Atomic Volume (cm³/mol)', 'min_data': 40, 'log_scale': False},
        'thermal_conductivity': {'label': 'Thermal Conductivity (W/mK)', 'min_data': 30, 'log_scale': False},
        'c6': {'label': 'C6 Dispersion Coefficient', 'min_data': 30, 'log_scale': False},
        'dipole_polarizability': {'label': 'Dipole Polarizability', 'min_data': 30, 'log_scale': False},
        'period': {'label': 'Period', 'min_data': 100, 'log_scale': False},
        'group_id': {'label': 'Group', 'min_data': 100, 'log_scale': False},
    }
    
    # Check which properties are available and have sufficient data
    valid_properties = {}
    dropdown_properties = {}  # Separate dict for dropdown (excluding continuous correlative)
    property_info = {}
    
    # First, try to add element series as the default
    default_label, default_property = create_element_series_mapping(df)
    if default_property and default_property in df.columns:
        non_null_count = df[default_property].notna().sum()
        if non_null_count >= 50:  # Lower threshold for series data
            valid_properties[default_label] = default_property
            dropdown_properties[default_label] = default_property
            property_info[default_property] = {
                'label': default_label, 
                'min_data': 50, 
                'log_scale': False,
                'is_default': True
            }
    
    for prop_name, prop_config in curated_properties.items():
        if prop_name in available_props:
            # Count non-null values
            non_null_count = df[prop_name].notna().sum()
            if non_null_count >= prop_config['min_data']:
                valid_properties[prop_config['label']] = prop_name
                property_info[prop_name] = prop_config
                
                # Only add to dropdown if not continuous and correlative
                if not is_continuous_correlative_property(prop_name, df):
                    dropdown_properties[prop_config['label']] = prop_name
    
    # Add any other properties with very good data coverage (>80 elements)
    for prop in available_props:
        if prop not in curated_properties:
            non_null_count = df[prop].notna().sum()
            if non_null_count > 80:  # High threshold for uncurated properties
                display_name = prop.replace('_', ' ').title()
                log_scale = requires_log_scale(prop, df)
                valid_properties[display_name] = prop
                property_info[prop] = {'label': display_name, 'min_data': 80, 'log_scale': log_scale}
                
                # Only add to dropdown if not continuous and correlative
                if not is_continuous_correlative_property(prop, df):
                    dropdown_properties[display_name] = prop
    
    return valid_properties, dropdown_properties, property_info

# Get valid properties
valid_properties, dropdown_properties, property_info = filter_relevant_properties(elements_data, available_properties)

def get_portland_like_colorscale(use_log=False):
    """Get Portland or Portland-like colorscale"""
    # Portland is great - let's use variations of it
    if use_log:
        # For log scale, use a slightly adjusted Portland to handle the wider dynamic range
        return 'Portland'
    else:
        return 'Portland'

def should_use_log_scale(property_name, df):
    """Determine if logarithmic scale should be used based on data distribution"""
    if property_name not in df.columns:
        return False
    
    # Check if explicitly configured
    if property_name in property_info:
        configured_log = property_info[property_name].get('log_scale', False)
        if configured_log:
            return True
    
    # Use improved heuristic
    return requires_log_scale(property_name, df)

# Standard periodic table positions
ELEMENT_POSITIONS = {
    # Period 1
    1: (1, 1), 2: (18, 1),
    # Period 2
    3: (1, 2), 4: (2, 2), 5: (13, 2), 6: (14, 2), 7: (15, 2), 8: (16, 2), 9: (17, 2), 10: (18, 2),
    # Period 3
    11: (1, 3), 12: (2, 3), 13: (13, 3), 14: (14, 3), 15: (15, 3), 16: (16, 3), 17: (17, 3), 18: (18, 3),
    # Period 4
    19: (1, 4), 20: (2, 4), 21: (3, 4), 22: (4, 4), 23: (5, 4), 24: (6, 4), 25: (7, 4), 26: (8, 4),
    27: (9, 4), 28: (10, 4), 29: (11, 4), 30: (12, 4), 31: (13, 4), 32: (14, 4), 33: (15, 4), 34: (16, 4), 35: (17, 4), 36: (18, 4),
    # Period 5
    37: (1, 5), 38: (2, 5), 39: (3, 5), 40: (4, 5), 41: (5, 5), 42: (6, 5), 43: (7, 5), 44: (8, 5),
    45: (9, 5), 46: (10, 5), 47: (11, 5), 48: (12, 5), 49: (13, 5), 50: (14, 5), 51: (15, 5), 52: (16, 5), 53: (17, 5), 54: (18, 5),
    # Period 6
    55: (1, 6), 56: (2, 6), 
    # Lanthanides (period 6 continued)
    57: (4, 9), 58: (5, 9), 59: (6, 9), 60: (7, 9), 61: (8, 9), 62: (9, 9), 63: (10, 9), 64: (11, 9),
    65: (12, 9), 66: (13, 9), 67: (14, 9), 68: (15, 9), 69: (16, 9), 70: (17, 9), 71: (18, 9),
    # Period 6 continued
    72: (4, 6), 73: (5, 6), 74: (6, 6), 75: (7, 6), 76: (8, 6), 77: (9, 6), 78: (10, 6), 79: (11, 6),
    80: (12, 6), 81: (13, 6), 82: (14, 6), 83: (15, 6), 84: (16, 6), 85: (17, 6), 86: (18, 6),
    # Period 7
    87: (1, 7), 88: (2, 7),
    # Actinides (period 7 continued)
    89: (4, 10), 90: (5, 10), 91: (6, 10), 92: (7, 10), 93: (8, 10), 94: (9, 10), 95: (10, 10), 96: (11, 10),
    97: (12, 10), 98: (13, 10), 99: (14, 10), 100: (15, 10), 101: (16, 10), 102: (17, 10), 103: (18, 10),
    # Period 7 continued
    104: (4, 7), 105: (5, 7), 106: (6, 7), 107: (7, 7), 108: (8, 7), 109: (9, 7), 110: (10, 7), 111: (11, 7),
    112: (12, 7), 113: (13, 7), 114: (14, 7), 115: (15, 7), 116: (16, 7), 117: (17, 7), 118: (18, 7)
}

def get_electronic_configuration(element):
    """Extract electronic configuration from element data"""
    # Try different possible column names for electronic configuration
    config_columns = ['electronic_configuration', 'electron_configuration', 'econf', 'ec']
    
    for col in config_columns:
        if col in element.index and pd.notna(element.get(col)):
            return str(element[col])
    
    # If no explicit electronic configuration column, try to construct it from other data
    # This is a fallback - the mendeleev library should have this data
    return None

def create_hover_text(element, selected_property, original_value, display_value):
    """Create detailed hover text for an element"""
    
    def format_value(value, unit="", is_integer=False):
        if pd.isna(value):
            return "N/A"
        if isinstance(value, (int, float)):
            if is_integer:
                return f"{int(round(value))} {unit}".strip()
            elif abs(value) >= 1000:
                return f"{value:.2e} {unit}".strip()
            elif abs(value) >= 10:
                return f"{value:.2f} {unit}".strip()
            else:
                return f"{value:.3f} {unit}".strip()
        return str(value)
    
    # Get property info
    prop_config = property_info.get(selected_property, {})
    prop_label = prop_config.get('label', selected_property.replace('_', ' ').title())
    
    # Determine if this is an integer property
    is_int_prop = is_integer_property(selected_property, elements_data)
    
    # Determine units based on property name
    if 'density' in selected_property.lower():
        unit = "g/cm³"
    elif 'electronegativity' in selected_property.lower():
        unit = ""
    elif 'radius' in selected_property.lower():
        unit = "pm"
    elif 'energy' in selected_property.lower() or 'ionization' in selected_property.lower():
        unit = "eV"
    elif 'affinity' in selected_property.lower():
        unit = "eV"
    elif 'point' in selected_property.lower() or 'temperature' in selected_property.lower():
        unit = "K"
    elif 'weight' in selected_property.lower() or 'mass' in selected_property.lower():
        unit = "u"
    elif 'volume' in selected_property.lower():
        unit = "cm³/mol"
    elif 'conductivity' in selected_property.lower():
        unit = "W/mK"
    else:
        unit = ""
    
    current_str = format_value(original_value, unit, is_int_prop)
    
    # Build hover text with key properties
    hover_lines = [
        f"<b>{element.get('name', 'N/A')} ({element.get('symbol', 'N/A')})</b>",
        f"<b>{prop_label}: {current_str}</b>",
        "",  # Empty line for separation
        f"Atomic Number: {element.get('atomic_number', 'N/A')}",
    ]
    
    # Add electronic configuration if available
    electronic_config = get_electronic_configuration(element)
    if electronic_config:
        hover_lines.append(f"Electronic Configuration: {electronic_config}")
    
    # Add key properties if available
    key_properties = [
        ('atomic_weight', 'Atomic Weight', 'u', False),
        ('period', 'Period', '', True),
        ('group_id', 'Group', '', True),
        ('block', 'Block', '', False),
        ('en_pauling', 'Electronegativity', '', False),
        ('atomic_radius', 'Atomic Radius', 'pm', False),
        ('ionenergy', 'Ionization Energy', 'eV', False),
        ('melting_point', 'Melting Point', 'K', False),
        ('boiling_point', 'Boiling Point', 'K', False),
        ('density', 'Density', 'g/cm³', False),
    ]
    
    for prop_name, display_name, prop_unit, is_int in key_properties:
        if prop_name in element.index and pd.notna(element.get(prop_name)):
            value_str = format_value(element[prop_name], prop_unit, is_int)
            hover_lines.append(f"{display_name}: {value_str}")
    
    return "<br>".join(hover_lines)

def create_periodic_table_figure(selected_property_label):
    """Create the periodic table figure for the given property"""
    
    if not MENDELEEV_AVAILABLE or elements_data.empty:
        fig = go.Figure()
        fig.add_annotation(
            text="Mendeleev library not available. Please install: pip install mendeleev",
            showarrow=False,
            font=dict(size=16)
        )
        return fig
    
    # Get the actual property name from the label
    selected_property = valid_properties.get(selected_property_label)
    if not selected_property:
        fig = go.Figure()
        fig.add_annotation(
            text=f"Property '{selected_property_label}' not available",
            showarrow=False,
            font=dict(size=16)
        )
        return fig
    
    # Filter out elements without the selected property
    property_data = elements_data[selected_property].dropna()
    
    if property_data.empty:
        fig = go.Figure()
        fig.add_annotation(
            text=f"No data available for {selected_property_label}",
            showarrow=False,
            font=dict(size=16)
        )
        return fig
    
    # Determine if we should use log scale
    use_log = should_use_log_scale(selected_property, elements_data)
    
    # Prepare data for visualization
    if use_log:
        # For log scale, we need positive values
        positive_data = property_data[property_data > 0]
        if positive_data.empty:
            use_log = False
            viz_data = property_data
            min_value = property_data.min()
            max_value = property_data.max()
        else:
            viz_data = np.log10(positive_data)
            min_value = viz_data.min()
            max_value = viz_data.max()
    else:
        viz_data = property_data
        min_value = property_data.min()
        max_value = property_data.max()
    
    # Initialize data lists
    hover_texts = []
    element_symbols = []
    atomic_numbers = []
    x_positions = []
    y_positions = []
    element_values = []
    
    # Process each element
    for _, element in elements_data.iterrows():
        atomic_num = element['atomic_number']
        
        # Skip elements without position data
        if atomic_num not in ELEMENT_POSITIONS:
            continue
        
        x_pos, y_pos = ELEMENT_POSITIONS[atomic_num]
        x_positions.append(x_pos)
        y_positions.append(11 - y_pos)  # Invert y-axis for correct table layout
        element_symbols.append(element['symbol'])
        atomic_numbers.append(atomic_num)
        
        # Get property value
        original_value = element[selected_property]
        
        if pd.notna(original_value):
            if use_log and original_value > 0:
                display_value = np.log10(original_value)
            else:
                display_value = original_value
        else:
            display_value = np.nan
        
        element_values.append(display_value)
        
        # Create comprehensive hover text
        hover_text = create_hover_text(element, selected_property, original_value, display_value)
        hover_texts.append(hover_text)
    
    # Create the figure
    fig = go.Figure()
    
    # Add scatter plot
    fig.add_trace(go.Scatter(
        x=x_positions,
        y=y_positions,
        mode='markers+text',
        text=element_symbols,
        hoverinfo='text',
        hovertext=hover_texts,
        textfont=dict(
            family="Arial, sans-serif",
            size=14,
            color="white",
            weight="bold",
        ),
        hoverlabel=dict(
            bgcolor="rgba(255,255,255,0.95)",
            font_size=12,
            font_family="Arial, sans-serif",
            bordercolor="black"
        ),
        marker=dict(
            symbol='square',
            color=element_values,
            size=45,
            colorscale=get_portland_like_colorscale(use_log),
            cmin=min_value,
            cmax=max_value,
            colorbar=dict(
                title=f"{selected_property_label}{'<br>(log scale)' if use_log else ''}",
                thickness=20,
                x=1.02
            ),
            showscale=True,
            line=dict(color='black', width=1)
        )
    ))
    
    # Add atomic number annotations
    for i in range(len(x_positions)):
        fig.add_annotation(
            x=x_positions[i],
            y=y_positions[i] + 0.3,
            text=str(atomic_numbers[i]),
            showarrow=False,
            font=dict(
                family="Arial, sans-serif",
                size=8,
                color="white",
                weight="bold",
            )
        )
    
    # Add lanthanide and actinide labels
    fig.add_annotation(x=3, y=2, text="Lanthanides", showarrow=False, 
                      font=dict(size=10, weight="bold"))
    fig.add_annotation(x=3, y=1, text="Actinides", showarrow=False, 
                      font=dict(size=10, weight="bold"))
    
    # Update layout
    title_text = f'<b>Periodic Table by {selected_property_label}</b>'
    if use_log:
        title_text += '<br><span style="font-size:14px;">(Logarithmic Color Scale)</span>'
    
    fig.update_layout(
        title=dict(
            text=title_text,
            x=0.5,
            font=dict(size=24)
        ),
        xaxis=dict(
            range=[0, 19],
            showgrid=False,
            zeroline=False,
            showticklabels=False,
            visible=False
        ),
        yaxis=dict(
            range=[0, 12],
            showgrid=False,
            zeroline=False,
            showticklabels=False,
            visible=False
        ),
        plot_bgcolor='white',
        paper_bgcolor='#f8f9fa',
        width=1480,
        height=800,
        margin=dict(l=20, r=100, t=100, b=20)
    )
    
    return fig

# Create Gradio interface
def create_gradio_app():
    """Create the Gradio interface"""
    
    if not MENDELEEV_AVAILABLE or not dropdown_properties:
        def error_interface():
            return "❌ Mendeleev library not available or no valid properties found. Please install: pip install mendeleev"
        
        return gr.Interface(
            fn=error_interface,
            inputs=[],
            outputs=gr.Textbox(label="Error"),
            title="Periodic Table Dashboard - Error"
        )
    
    # Get property options for dropdown (excluding continuous correlative properties)
    property_options = list(dropdown_properties.keys())
    
    # Set default to element series if available, otherwise first property
    default_property = None
    for label, prop_name in dropdown_properties.items():
        if property_info.get(prop_name, {}).get('is_default', False):
            default_property = label
            break
    
    if not default_property and property_options:
        default_property = property_options[0]
    
    with gr.Blocks(title="Interactive Periodic Table", theme=gr.themes.Soft()) as app:
        gr.Markdown("# 🧪 Interactive Periodic Table")
        
        with gr.Row():
            with gr.Column(scale=1):
                property_dropdown = gr.Dropdown(
                    choices=property_options,
                    value=default_property,
                    label="Select Property to Colourize",
                )
        with gr.Row():
            plot_output = gr.Plot(show_label=False)
        with gr.Row():
            gr.Markdown(f""" 
                **🔬 Data Source:** [Mendeleev Library](https://mendeleev.readthedocs.io/)
                """)
        
        # Update plot when dropdown changes
        property_dropdown.change(
            fn=create_periodic_table_figure,
            inputs=[property_dropdown],
            outputs=[plot_output]
        )
        
        # Initialize with first property
        app.load(
            fn=create_periodic_table_figure,
            inputs=[property_dropdown],
            outputs=[plot_output]
        )
    
    return app

# Create and run the app
if __name__ == "__main__":
    print(f"🚀 Starting Gradio app with {len(dropdown_properties)} properties (excluding continuous correlative)")
    if dropdown_properties:
        print("📋 Available dropdown properties:")
        for label, prop_name in dropdown_properties.items():
            log_note = " (log scale)" if should_use_log_scale(prop_name, elements_data) else ""
            int_note = " (integer)" if is_integer_property(prop_name, elements_data) else ""
            default_note = " (DEFAULT)" if property_info.get(prop_name, {}).get('is_default', False) else ""
            data_count = elements_data[prop_name].notna().sum()
            print(f"  • {label}: {data_count} elements{log_note}{int_note}{default_note}")
    
    print(f"\n📋 Total valid properties (including continuous correlative): {len(valid_properties)}")
    
    app = create_gradio_app()
    app.launch()