Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Hurun_Global_Rich_List_2025_COORD.csv +0 -0
- app.py +201 -0
- requirements.txt +5 -0
Hurun_Global_Rich_List_2025_COORD.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
import random
|
8 |
+
|
9 |
+
# Load and preprocess data
|
10 |
+
df = pd.read_csv('Hurun_Global_Rich_List_2025_COORD.csv')
|
11 |
+
df['Wealth $B'] = pd.to_numeric(df['Wealth $B'], errors='coerce')
|
12 |
+
df = df.dropna(subset=['lat', 'lon'])
|
13 |
+
df['Log Wealth'] = np.log10(df['Wealth $B'])
|
14 |
+
|
15 |
+
# Extract country from location
|
16 |
+
df['Country'] = df['Location'].str.split(',').str[-1].str.strip()
|
17 |
+
|
18 |
+
# Add jitter to coordinates to prevent overlapping
|
19 |
+
def add_jitter(coords, jitter_range=0.2):
|
20 |
+
"""Add random jitter to coordinates to prevent overlapping markers"""
|
21 |
+
# Create a dictionary to track coordinate counts
|
22 |
+
coord_counts = {}
|
23 |
+
jittered_coords = []
|
24 |
+
|
25 |
+
for coord in coords:
|
26 |
+
# Round coordinates to 2 decimal places for grouping
|
27 |
+
rounded = (round(coord[0], 2), round(coord[1], 2))
|
28 |
+
|
29 |
+
# Count how many times we've seen this approximate location
|
30 |
+
count = coord_counts.get(rounded, 0)
|
31 |
+
coord_counts[rounded] = count + 1
|
32 |
+
|
33 |
+
# Only add jitter if there are multiple points at this location
|
34 |
+
if count > 0:
|
35 |
+
# Calculate jitter based on count to spread points
|
36 |
+
angle = 2 * math.pi * (count / 8) # Spread in 8 directions
|
37 |
+
distance = jitter_range * min(0.5 + count/10, 1.5) # Scale with count
|
38 |
+
|
39 |
+
jitter_lat = math.sin(angle) * distance
|
40 |
+
jitter_lon = math.cos(angle) * distance
|
41 |
+
|
42 |
+
jittered_coords.append((coord[0] + jitter_lat, coord[1] + jitter_lon))
|
43 |
+
else:
|
44 |
+
jittered_coords.append(coord)
|
45 |
+
|
46 |
+
return jittered_coords
|
47 |
+
|
48 |
+
# Create logarithmic scale for visualization
|
49 |
+
def create_globe():
|
50 |
+
# Calculate logarithmic values for visualization
|
51 |
+
df['Size'] = df['Log Wealth'] * 8
|
52 |
+
df['Color Value'] = df['Log Wealth']
|
53 |
+
|
54 |
+
# Add jitter to coordinates
|
55 |
+
coords = list(zip(df['lat'], df['lon']))
|
56 |
+
jittered_coords = add_jitter(coords)
|
57 |
+
df['lat_jitter'] = [c[0] for c in jittered_coords]
|
58 |
+
df['lon_jitter'] = [c[1] for c in jittered_coords]
|
59 |
+
|
60 |
+
# Generate linear tick positions for legend
|
61 |
+
min_log = df['Log Wealth'].min()
|
62 |
+
max_log = df['Log Wealth'].max()
|
63 |
+
|
64 |
+
wealth_ticks = [1, 10, 30, 100, 300, 1000]
|
65 |
+
log_ticks = [math.log10(x) for x in wealth_ticks if x <= 10**max_log and x >= 10**min_log]
|
66 |
+
tick_labels = [f"${x}B" for x in wealth_ticks if x <= 10**max_log and x >= 10**min_log]
|
67 |
+
|
68 |
+
fig = go.Figure(go.Scattergeo(
|
69 |
+
lon = df['lon_jitter'],
|
70 |
+
lat = df['lat_jitter'],
|
71 |
+
text = df.apply(lambda row: (
|
72 |
+
f"<b>{row['Name']}</b><br>"
|
73 |
+
f"Rank: {row['Rank']}<br>"
|
74 |
+
f"Wealth: ${row['Wealth $B']}B<br>"
|
75 |
+
f"Enterprise: {row['Enterprise']}<br>"
|
76 |
+
f"Sector: {row['Sector']}<br>"
|
77 |
+
f"Age: {row['Age']}<br>"
|
78 |
+
f"Location: {row['Location']}"
|
79 |
+
), axis=1),
|
80 |
+
marker = dict(
|
81 |
+
size = df['Size'],
|
82 |
+
color = df['Color Value'],
|
83 |
+
colorscale = 'Turbo',
|
84 |
+
opacity = 0.7,
|
85 |
+
line_color='rgb(40,40,40)',
|
86 |
+
line_width=0.5,
|
87 |
+
sizemode = 'diameter',
|
88 |
+
colorbar = dict(
|
89 |
+
title="Wealth (Billion USD)",
|
90 |
+
thickness=15,
|
91 |
+
len=0.35,
|
92 |
+
bgcolor='rgba(255,255,255,0.5)',
|
93 |
+
tickvals = log_ticks,
|
94 |
+
ticktext = tick_labels
|
95 |
+
)
|
96 |
+
),
|
97 |
+
hoverinfo = 'text',
|
98 |
+
name = ''
|
99 |
+
))
|
100 |
+
|
101 |
+
fig.update_geos(
|
102 |
+
projection_type="orthographic",
|
103 |
+
showcoastlines=True,
|
104 |
+
coastlinecolor="RebeccaPurple",
|
105 |
+
showland=True,
|
106 |
+
landcolor="rgb(243, 243, 243)",
|
107 |
+
showocean=True,
|
108 |
+
oceancolor="rgb(217, 244, 252)"
|
109 |
+
)
|
110 |
+
|
111 |
+
fig.update_layout(
|
112 |
+
height=500,
|
113 |
+
margin={"r":0,"t":0,"l":0,"b":0},
|
114 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
115 |
+
geo=dict(bgcolor='rgba(0,0,0,0)')
|
116 |
+
)
|
117 |
+
return fig
|
118 |
+
|
119 |
+
# Create distribution plots
|
120 |
+
def create_age_plot():
|
121 |
+
fig = px.histogram(df, x='Age', nbins=20,
|
122 |
+
title='Age Distribution',
|
123 |
+
color_discrete_sequence=['#636EFA'])
|
124 |
+
fig.update_layout(height=300)
|
125 |
+
return fig
|
126 |
+
|
127 |
+
def create_country_plot():
|
128 |
+
top_countries = df['Country'].value_counts().head(10)
|
129 |
+
fig = px.bar(top_countries,
|
130 |
+
title='Top 10 Countries',
|
131 |
+
labels={'value': 'Count', 'index': 'Country'},
|
132 |
+
color=top_countries.index,
|
133 |
+
color_discrete_sequence=px.colors.qualitative.Pastel)
|
134 |
+
fig.update_layout(height=300, showlegend=False)
|
135 |
+
return fig
|
136 |
+
|
137 |
+
def create_gender_plot():
|
138 |
+
gender_counts = df['Sex'].value_counts()
|
139 |
+
fig = px.pie(gender_counts,
|
140 |
+
names=gender_counts.index,
|
141 |
+
values=gender_counts.values,
|
142 |
+
title='Gender Distribution',
|
143 |
+
hole=0.4)
|
144 |
+
fig.update_layout(height=300)
|
145 |
+
return fig
|
146 |
+
|
147 |
+
def create_sector_plot():
|
148 |
+
top_sectors = df['Sector'].value_counts().head(10)
|
149 |
+
fig = px.bar(top_sectors,
|
150 |
+
title='Top 10 Sectors',
|
151 |
+
labels={'value': 'Count', 'index': 'Sector'},
|
152 |
+
color=top_sectors.index,
|
153 |
+
color_discrete_sequence=px.colors.qualitative.Pastel)
|
154 |
+
fig.update_layout(height=300, showlegend=False)
|
155 |
+
return fig
|
156 |
+
|
157 |
+
# Create display dataframe without extra columns
|
158 |
+
display_columns = ['Rank', 'Rank change', 'Wealth $B', 'Enterprise', 'Sector',
|
159 |
+
'Name', 'Sex', 'Age', 'Sidekick', 'Location']
|
160 |
+
display_df = df[display_columns].sort_values('Rank').reset_index(drop=True)
|
161 |
+
|
162 |
+
# Create Gradio interface
|
163 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
164 |
+
gr.Markdown("# 🗺️ Global Billionaires Dashboard 2025")
|
165 |
+
gr.Markdown("Interactive visualisation of the world's wealthiest individuals")
|
166 |
+
|
167 |
+
with gr.Row():
|
168 |
+
with gr.Column():
|
169 |
+
gr.Markdown("### 🌍 Global Wealth Distribution")
|
170 |
+
gr.Markdown("Circle size and color intensity both represent wealth on a logarithmic scale")
|
171 |
+
gr.Markdown("Nearby points are slightly randomized to prevent overlapping")
|
172 |
+
globe = gr.Plot(create_globe(), label="Globe")
|
173 |
+
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
gr.Markdown("### 📊 Distribution Analysis")
|
177 |
+
|
178 |
+
with gr.Row():
|
179 |
+
with gr.Column():
|
180 |
+
age_plot = gr.Plot(create_age_plot())
|
181 |
+
with gr.Column():
|
182 |
+
country_plot = gr.Plot(create_country_plot())
|
183 |
+
|
184 |
+
with gr.Row():
|
185 |
+
with gr.Column():
|
186 |
+
gender_plot = gr.Plot(create_gender_plot())
|
187 |
+
with gr.Column():
|
188 |
+
sector_plot = gr.Plot(create_sector_plot())
|
189 |
+
|
190 |
+
with gr.Row():
|
191 |
+
with gr.Column():
|
192 |
+
gr.Markdown("### 📋 Full Billionaire Data")
|
193 |
+
data_table = gr.Dataframe(
|
194 |
+
value=display_df,
|
195 |
+
interactive=True,
|
196 |
+
column_widths=["auto"] * len(display_columns),
|
197 |
+
wrap=True,
|
198 |
+
col_count=(len(display_columns), "fixed")
|
199 |
+
)
|
200 |
+
|
201 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
plotly
|
2 |
+
gradio
|
3 |
+
pandas
|
4 |
+
numpy
|
5 |
+
lxml
|