Spaces:
Runtime error
Runtime error
File size: 38,153 Bytes
d82600f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 |
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.responses import HTMLResponse, JSONResponse
from typing import List, Optional
import os
from .document_loader import DocumentLoader
from .chunking import chunk_text
from .vector_store import add_to_vector_store, similarity_search
from .summarizer import DocumentSummarizer, clean_markdown_formatting
# Remove Qwen/transformers imports and model initialization
app = FastAPI(title="RAG Document Summarizer", version="1.0.0")
print("[INFO] RAG Application starting up...")
# Global exception handler to ensure all errors return JSON
@app.exception_handler(Exception)
async def global_exception_handler(request, exc):
print(f"[ERROR] Unhandled exception: {exc}")
return JSONResponse(
status_code=500,
content={"error": f"Internal server error: {str(exc)}"}
)
# Remove Qwen2-0.5B model instance for queries (CPU-optimized)
def initialize_qwen_model():
"""Initialize Qwen2-0.5B model for query responses (CPU-optimized)"""
# This function is no longer needed as Qwen model is removed.
# Keeping it for now, but it will not initialize the model.
print("[INFO] Qwen model is no longer available. Using simulated responses for queries.")
return False
# Initialize model on startup (non-blocking)
@app.on_event("startup")
async def startup_event():
print("[INFO] Starting RAG application...")
# Initialize model in background to avoid blocking startup
import asyncio
asyncio.create_task(initialize_qwen_model_async())
async def initialize_qwen_model_async():
"""Initialize Qwen model asynchronously to avoid blocking startup"""
try:
initialize_qwen_model()
except Exception as e:
print(f"[WARNING] Model initialization failed: {e}")
print("[INFO] Application will continue with simulated responses")
@app.get("/health")
async def health_check():
"""Simple health check endpoint"""
return {"status": "healthy", "message": "RAG application is running"}
@app.get("/", response_class=HTMLResponse)
async def read_root():
return """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>AI Document Summarizer & Query Resolver</title>
<script src="https://cdn.tailwindcss.com"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/pdf-lib/1.17.1/pdf-lib.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mammoth/1.5.0/mammoth.browser.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jszip/3.10.1/jszip.min.js"></script>
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
:root {
--pastel-blue: #89CFF0;
--pastel-green: #A8E6CF;
--pastel-purple: #D7A9E3;
--pastel-pink: #F5B7B1;
}
* {
font-family: 'Inter', sans-serif;
}
body {
background: linear-gradient(135deg, #1a1a1a 0%, #2a2a2a 100%);
color: #e0e0e0;
line-height: 1.6;
}
.glass-effect {
background: rgba(0, 0, 0, 0.3);
border: 1px solid rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
}
.file-upload-area {
background: linear-gradient(135deg, rgba(30, 30, 30, 0.5) 0%, rgba(50, 50, 50, 0.5) 100%);
border: 2px dashed rgba(255, 255, 255, 0.2);
transition: all 0.3s ease;
}
.file-upload-area:hover {
border-color: var(--pastel-blue);
}
.chunk-card {
background: linear-gradient(135deg, rgba(0, 0, 0, 0.2) 0%, rgba(0, 0, 0, 0.1) 100%);
border: 1px solid rgba(255, 255, 255, 0.1);
}
.progress-bar {
background: linear-gradient(90deg, var(--pastel-blue) 0%, var(--pastel-green) 100%);
}
@keyframes float {
0%, 100% { transform: translateY(0px); }
50% { transform: translateY(-5px); }
}
.floating-element {
animation: float 5s ease-in-out infinite;
}
.query-bubble {
background: linear-gradient(135deg, #333 0%, #444 100%);
border-radius: 20px 20px 5px 20px;
}
.response-bubble {
background: linear-gradient(135deg, rgba(0, 0, 0, 0.2) 0%, rgba(0, 0, 0, 0.1) 100%);
border: 1px solid rgba(255, 255, 255, 0.1);
border-radius: 20px 20px 20px 5px;
}
h1 {
font-size: 3.75rem;
font-weight: 700;
}
h2 {
font-size: 2.25rem;
font-weight: 600;
}
</style>
</head>
<body>
<!-- Background Effects -->
<div class="fixed inset-0 overflow-hidden pointer-events-none">
<div class="absolute top-20 left-10 w-64 h-64 bg-[var(--pastel-blue)] rounded-full opacity-5 blur-3xl floating-element"></div>
<div class="absolute top-40 right-20 w-48 h-48 bg-[var(--pastel-green)] rounded-full opacity-5 blur-2xl floating-element" style="animation-delay: 1s;"></div>
<div class="absolute bottom-20 left-1/3 w-56 h-56 bg-[var(--pastel-purple)] rounded-full opacity-5 blur-3xl floating-element" style="animation-delay: 2s;"></div>
</div>
<!-- Header -->
<header class="relative z-10 py-8">
<div class="container mx-auto px-6">
<div class="text-center">
<h1 class="text-6xl font-bold mb-4">AI Document Summarizer</h1>
<p class="text-xl mb-6">Advanced Document Processing and Query Resolution</p>
</div>
</div>
</header>
<!-- Main Content -->
<main class="container mx-auto px-6 pb-16">
<!-- File Upload Section -->
<div class="glass-effect rounded-3xl p-10 mb-8">
<h2 class="text-4xl font-bold mb-6 text-center">Document Upload</h2>
<div id="fileUploadArea" class="file-upload-area rounded-2xl p-12 text-center cursor-pointer">
<div class="mb-4">
<svg class="w-16 h-16 mx-auto text-[var(--pastel-blue)] mb-4" fill="none" stroke="currentColor" viewBox="0 0 24 24">
<path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M7 16a4 4 0 01-.88-7.903A5 5 0 1115.9 6L16 6a5 5 0 011 9.9M15 13l-3-3m0 0l-3 3m3-3v12"></path>
</svg>
</div>
<p class="text-2xl font-semibold mb-2">Drop your documents here</p>
<p class="text-gray-400 mb-4">or click to browse</p>
<div class="flex justify-center space-x-2 text-sm text-gray-500">
<span>Supports: PDF, DOCX, PPTX, TXT</span>
<span>•</span>
<span>Max size: 100MB</span>
</div>
</div>
<input type="file" id="fileInput" multiple accept=".pdf,.docx,.pptx,.txt" class="hidden">
<!-- Processing Status -->
<div id="processingStatus" class="mt-6 hidden">
<div class="bg-gray-800 rounded-xl p-4">
<div class="flex items-center justify-between mb-2">
<span class="font-medium">Processing Document...</span>
<span id="processingPercentage" class="text-[var(--pastel-blue)] font-bold">0%</span>
</div>
<div class="w-full bg-gray-700 rounded-full h-2">
<div id="progressBar" class="progress-bar h-2 rounded-full" style="width: 0%"></div>
</div>
<div id="processingSteps" class="mt-4 space-y-2"></div>
</div>
</div>
<!-- File List -->
<div id="fileList" class="mt-6 space-y-3"></div>
</div>
<!-- Document Analysis & Summary -->
<div id="documentAnalysis" class="glass-effect rounded-3xl p-10 mb-8 hidden">
<h2 class="text-4xl font-bold mb-6">Document Analysis</h2>
<div class="grid md:grid-cols-2 lg:grid-cols-3 gap-6 mb-8">
<div class="chunk-card rounded-xl p-6">
<h3 class="text-lg font-semibold mb-2">Document Type</h3>
<p id="documentType" class="text-gray-400">-</p>
</div>
<div class="chunk-card rounded-xl p-6">
<h3 class="text-lg font-semibold mb-2">Page Count</h3>
<p id="pageCount" class="text-gray-400">-</p>
</div>
<div class="chunk-card rounded-xl p-6">
<h3 class="text-lg font-semibold mb-2">Chunks Created</h3>
<p id="chunkCount" class="text-gray-400">-</p>
</div>
</div>
<div class="chunk-card rounded-xl p-6">
<h3 class="text-xl font-semibold mb-4">Document Summary</h3>
<div id="documentSummary" class="text-gray-400 leading-relaxed">
<div class="processing-animation">Generating summary...</div>
</div>
</div>
</div>
<!-- Query Interface -->
<div class="glass-effect rounded-3xl p-10 mb-8">
<h2 class="text-4xl font-bold mb-6">Query Resolver</h2>
<div class="mb-6">
<div class="relative">
<input
type="text"
id="queryInput"
placeholder="Ask anything about your document..."
class="w-full px-6 py-4 bg-gray-800 border border-gray-700 rounded-2xl text-white placeholder-gray-500 focus:outline-none focus:border-[var(--pastel-blue)]"
disabled
>
<button
id="querySubmit"
class="absolute right-2 top-2 px-6 py-2 bg-gray-800 hover:bg-[var(--pastel-blue)]/20 rounded-xl text-white font-medium transition-all duration-200 disabled:opacity-50"
disabled
>
Ask
</button>
</div>
<div class="mt-3 flex flex-wrap gap-2">
<button class="suggestion-btn px-4 py-2 bg-gray-800 hover:bg-[var(--pastel-blue)]/20 rounded-full text-sm text-gray-400 transition-all duration-200">
What are the key points?
</button>
<button class="suggestion-btn px-4 py-2 bg-gray-800 hover:bg-[var(--pastel-blue)]/20 rounded-full text-sm text-gray-400 transition-all duration-200">
Explain the main concepts
</button>
<button class="suggestion-btn px-4 py-2 bg-gray-800 hover:bg-[var(--pastel-blue)]/20 rounded-full text-sm text-gray-400 transition-all duration-200">
What conclusions are drawn?
</button>
</div>
</div>
<div id="queryHistory" class="space-y-4 max-h-96 overflow-y-auto"></div>
</div>
</main>
<script>
// Global state
let documents = [];
let currentDocument = null;
let documentChunks = [];
let isProcessing = false;
// Initialize application
document.addEventListener('DOMContentLoaded', function() {
initializeFileUpload();
initializeQueryInterface();
initializeSuggestions();
});
function initializeFileUpload() {
const fileUploadArea = document.getElementById('fileUploadArea');
const fileInput = document.getElementById('fileInput');
fileUploadArea.addEventListener('click', () => {
if (!isProcessing) {
fileInput.click();
}
});
fileInput.addEventListener('change', (e) => {
handleFiles(e.target.files);
});
fileUploadArea.addEventListener('dragover', (e) => {
e.preventDefault();
fileUploadArea.classList.add('dragover');
});
fileUploadArea.addEventListener('dragleave', () => {
fileUploadArea.classList.remove('dragover');
});
fileUploadArea.addEventListener('drop', (e) => {
e.preventDefault();
fileUploadArea.classList.remove('dragover');
handleFiles(e.dataTransfer.files);
});
}
function initializeQueryInterface() {
const queryInput = document.getElementById('queryInput');
const querySubmit = document.getElementById('querySubmit');
querySubmit.addEventListener('click', () => {
const query = queryInput.value.trim();
if (query) {
processQuery(query);
queryInput.value = '';
}
});
queryInput.addEventListener('keypress', (e) => {
if (e.key === 'Enter') {
querySubmit.click();
}
});
}
function initializeSuggestions() {
document.querySelectorAll('.suggestion-btn').forEach(btn => {
btn.addEventListener('click', () => {
const query = btn.textContent.trim();
document.getElementById('queryInput').value = query;
document.getElementById('querySubmit').click();
});
});
}
async function handleFiles(files) {
if (isProcessing) return;
for (const file of files) {
if (validateFile(file)) {
await processDocument(file);
}
}
}
function validateFile(file) {
const allowedTypes = [
'application/pdf',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'application/vnd.openxmlformats-officedocument.presentationml.presentation',
'text/plain'
];
if (!allowedTypes.includes(file.type)) {
showNotification('Unsupported file type. Please upload PDF, DOCX, PPTX, or TXT files.', 'error');
return false;
}
if (file.size > 100 * 1024 * 1024) {
showNotification('File too large. Maximum size is 100MB.', 'error');
return false;
}
return true;
}
async function processDocument(file) {
isProcessing = true;
showProcessingStatus();
try {
updateProcessingStep('Uploading document...', 10);
// Create FormData for file upload
const formData = new FormData();
formData.append('file', file);
updateProcessingStep('Processing document...', 30);
// Send file to backend
const response = await fetch('/upload', {
method: 'POST',
body: formData
});
if (!response.ok) {
let errorMessage = 'Upload failed';
let errorText = '';
try {
// Try to parse as JSON
const errorData = await response.json();
errorMessage = errorData.error || 'Upload failed';
} catch (jsonError) {
// Only try to read as text if .json() fails and errorText is still empty
if (!errorText) {
errorText = await response.text();
console.error('Non-JSON error response:', errorText);
}
errorMessage = `Server error (${response.status}): ${response.statusText}`;
}
throw new Error(errorMessage);
}
updateProcessingStep('Analyzing content...', 70);
// Only read the response body once
const result = await response.json();
updateProcessingStep('Processing complete!', 100);
const document = {
id: Date.now(),
name: file.name,
type: getFileType(file.name),
size: file.size,
pageCount: result.page_estimate || 1,
chunks: result.chunk_count || 0,
summary: result.summary,
classification: result.classification,
processingMethod: result.processing_method
};
documents.push(document);
currentDocument = document;
displayDocumentInfo(document);
enableQueryInterface();
setTimeout(() => {
hideProcessingStatus();
showNotification('Document processed successfully!', 'success');
}, 1000);
} catch (error) {
console.error('Error processing document:', error);
showNotification('Error processing document: ' + error.message, 'error');
hideProcessingStatus();
}
isProcessing = false;
}
function getFileType(filename) {
const extension = filename.split('.').pop().toLowerCase();
const typeMap = {
'pdf': 'PDF Document',
'docx': 'Word Document',
'pptx': 'PowerPoint Presentation',
'txt': 'Text Document'
};
return typeMap[extension] || 'Unknown';
}
function displayDocumentInfo(docData) {
document.getElementById('documentType').textContent = docData.type;
document.getElementById('pageCount').textContent = `${docData.pageCount} pages (${docData.classification})`;
document.getElementById('chunkCount').textContent = `${docData.chunks} chunks`;
const summaryElement = document.getElementById('documentSummary');
summaryElement.innerHTML = '';
let i = 0;
const summary = docData.summary;
const typeInterval = setInterval(() => {
if (i < summary.length) {
summaryElement.textContent += summary.charAt(i);
i++;
} else {
clearInterval(typeInterval);
}
}, 20);
document.getElementById('documentAnalysis').classList.remove('hidden');
}
function enableQueryInterface() {
document.getElementById('queryInput').disabled = false;
document.getElementById('querySubmit').disabled = false;
document.querySelectorAll('.suggestion-btn').forEach(btn => {
btn.disabled = false;
});
}
async function processQuery(query) {
if (!currentDocument) return;
addQueryToHistory(query);
try {
const formData = new FormData();
formData.append('filename', currentDocument.name);
formData.append('query', query);
const response = await fetch('/query', {
method: 'POST',
body: formData
});
if (!response.ok) {
let errorMessage = 'Query failed';
try {
const errorData = await response.json();
errorMessage = errorData.error || 'Query failed';
} catch (jsonError) {
// If response is not JSON (e.g., HTML error page), get text content
const errorText = await response.text();
console.error('Non-JSON error response:', errorText);
errorMessage = `Server error (${response.status}): ${response.statusText}`;
}
throw new Error(errorMessage);
}
const result = await response.json();
addResponseToHistory(result.answer);
} catch (error) {
console.error('Error processing query:', error);
addResponseToHistory('Sorry, I encountered an error while processing your query. Please try again.');
}
}
function addQueryToHistory(query) {
const historyContainer = document.getElementById('queryHistory');
const queryElement = document.createElement('div');
queryElement.className = 'query-bubble p-4 ml-8';
queryElement.innerHTML = `
<div class="flex items-start">
<div class="flex-shrink-0 w-8 h-8 bg-gray-700 rounded-full flex items-center justify-center mr-3 mt-1">
<span class="text-sm">U</span>
</div>
<div class="flex-1">
<p class="font-medium">${query}</p>
<p class="text-sm text-gray-500 mt-1">${new Date().toLocaleTimeString()}</p>
</div>
</div>
`;
historyContainer.appendChild(queryElement);
historyContainer.scrollTop = historyContainer.scrollHeight;
}
function addResponseToHistory(response) {
const historyContainer = document.getElementById('queryHistory');
const responseElement = document.createElement('div');
responseElement.className = 'response-bubble p-4 mr-8';
responseElement.innerHTML = `
<div class="flex items-start">
<div class="flex-shrink-0 w-8 h-8 bg-[var(--pastel-blue)] rounded-full flex items-center justify-center mr-3 mt-1">
<span class="text-sm">A</span>
</div>
<div class="flex-1">
<div class="typing-indicator mb-2">
<span class="inline-block w-2 h-2 bg-[var(--pastel-blue)] rounded-full animate-pulse"></span>
<span class="inline-block w-2 h-2 bg-[var(--pastel-blue)] rounded-full animate-pulse ml-1" style="animation-delay: 0.2s;"></span>
<span class="inline-block w-2 h-2 bg-[var(--pastel-blue)] rounded-full animate-pulse ml-1" style="animation-delay: 0.4s;"></span>
</div>
<p class="response-text hidden leading-relaxed"></p>
<p class="text-sm text-gray-500 mt-2">${new Date().toLocaleTimeString()}</p>
</div>
</div>
`;
historyContainer.appendChild(responseElement);
historyContainer.scrollTop = historyContainer.scrollHeight;
setTimeout(() => {
const typingIndicator = responseElement.querySelector('.typing-indicator');
const responseText = responseElement.querySelector('.response-text');
typingIndicator.classList.add('hidden');
responseText.classList.remove('hidden');
let i = 0;
const typeInterval = setInterval(() => {
if (i < response.length) {
responseText.textContent += response.charAt(i);
i++;
historyContainer.scrollTop = historyContainer.scrollHeight;
} else {
clearInterval(typeInterval);
}
}, 30);
}, 1500);
}
function showProcessingStatus() {
document.getElementById('processingStatus').classList.remove('hidden');
document.getElementById('fileUploadArea').style.opacity = '0.5';
document.getElementById('fileUploadArea').style.pointerEvents = 'none';
}
function hideProcessingStatus() {
document.getElementById('processingStatus').classList.add('hidden');
document.getElementById('fileUploadArea').style.opacity = '1';
document.getElementById('fileUploadArea').style.pointerEvents = 'auto';
}
function updateProcessingStep(message, percentage) {
const stepsContainer = document.getElementById('processingSteps');
const progressBar = document.getElementById('progressBar');
const percentageDisplay = document.getElementById('processingPercentage');
progressBar.style.width = percentage + '%';
percentageDisplay.textContent = percentage + '%';
const stepElement = document.createElement('div');
stepElement.className = 'flex items-center text-sm text-gray-400';
stepElement.innerHTML = `
<div class="w-2 h-2 bg-[var(--pastel-blue)] rounded-full mr-3 flex-shrink-0"></div>
<span>${message}</span>
`;
stepsContainer.appendChild(stepElement);
while (stepsContainer.children.length > 3) {
stepsContainer.removeChild(stepsContainer.firstChild);
}
}
function showNotification(message, type = 'info') {
const notification = document.createElement('div');
const bgColor = type === 'error' ? 'bg-red-500' : type === 'success' ? 'bg-green-500' : 'bg-blue-500';
notification.className = `fixed top-4 right-4 ${bgColor} text-white px-6 py-3 rounded-lg shadow-lg z-50 transform translate-x-full transition-transform duration-300`;
notification.textContent = message;
document.body.appendChild(notification);
setTimeout(() => {
notification.classList.remove('translate-x-full');
}, 100);
setTimeout(() => {
notification.classList.add('translate-x-full');
setTimeout(() => {
if (notification.parentNode) {
notification.parentNode.removeChild(notification);
}
}, 300);
}, 4000);
}
</script>
</body>
</html>
"""
@app.post("/upload")
async def upload_document(file: UploadFile = File(...)):
"""Upload and process a document with improved error handling and logging"""
try:
print(f"[INFO] Received file: {file.filename}")
upload_dir = "uploaded_docs"
try:
os.makedirs(upload_dir, exist_ok=True)
except Exception as e:
print(f"[ERROR] Failed to create upload directory: {e}")
return JSONResponse(status_code=500, content={"error": f"Failed to create upload directory: {str(e)}"})
file_location = os.path.join(upload_dir, file.filename)
try:
with open(file_location, "wb") as f:
f.write(await file.read())
print(f"[INFO] File saved to: {file_location}")
except Exception as e:
print(f"[ERROR] Failed to save file: {e}")
return JSONResponse(status_code=500, content={"error": f"Failed to save file: {str(e)}"})
try:
loader = DocumentLoader(file_location)
documents = loader.load()
print(f"[INFO] Loaded {len(documents)} document(s) from file.")
# Get real page/slide count
page_count = loader.get_page_count() or 1
except Exception as e:
print(f"[ERROR] Document loading failed: {e}")
return JSONResponse(status_code=400, content={"error": f"Document loading failed: {str(e)}"})
try:
text_content = " ".join([doc.page_content for doc in documents])
print(f"[INFO] Extracted text content, length: {len(text_content)} characters.")
except Exception as e:
print(f"[ERROR] Failed to extract text: {e}")
return JSONResponse(status_code=500, content={"error": f"Failed to extract text: {str(e)}"})
try:
summarizer = DocumentSummarizer()
summary_result = await summarizer.summarize_document(text_content)
print(f"[INFO] Document summarized. Classification: {summary_result.get('classification')}")
except Exception as e:
print(f"[ERROR] Summarization failed: {e}")
return JSONResponse(status_code=500, content={"error": f"Summarization failed: {str(e)}"})
try:
chunks = chunk_text(text_content)
print(f"[INFO] Created {len(chunks)} chunk(s) for vector store.")
except Exception as e:
print(f"[ERROR] Chunking failed: {e}")
return JSONResponse(status_code=500, content={"error": f"Chunking failed: {str(e)}"})
try:
add_to_vector_store(chunks)
print(f"[INFO] Chunks added to vector store.")
except Exception as e:
print(f"[ERROR] Vector store addition failed: {e}")
return JSONResponse(status_code=500, content={"error": f"Vector store addition failed: {str(e)}"})
# Store chunks for small document queries (in-memory, keyed by filename)
if not hasattr(app.state, 'doc_chunks'):
app.state.doc_chunks = {}
app.state.doc_chunks[file.filename] = chunks
return {
"filename": file.filename,
"summary": summary_result["summary"],
"classification": summary_result["classification"],
"chunk_count": summary_result["chunk_count"],
"processing_method": summary_result["processing_method"],
"page_estimate": page_count
}
except Exception as e:
print(f"[ERROR] Unexpected error: {e}")
return JSONResponse(
status_code=500,
content={"error": f"Unexpected error processing document: {str(e)}"}
)
@app.post("/summarize")
async def summarize_document(filename: str = Form(...)):
"""Generate summary for a specific document"""
try:
file_location = f"uploaded_docs/{filename}"
if not os.path.exists(file_location):
return JSONResponse(
status_code=404,
content={"error": "Document not found"}
)
# Load and process document
loader = DocumentLoader(file_location)
documents = loader.load()
text_content = " ".join([doc.page_content for doc in documents])
# Generate summary
summarizer = DocumentSummarizer()
summary_result = await summarizer.summarize_document(text_content)
return {
"filename": filename,
"summary": summary_result["summary"],
"classification": summary_result["classification"],
"chunk_count": summary_result["chunk_count"],
"processing_method": summary_result["processing_method"]
}
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": f"Error summarizing document: {str(e)}"}
)
@app.post("/query")
async def query_document(filename: str = Form(...), query: str = Form(...)):
"""Query a document using RAG pipeline"""
try:
# Try to get all chunks for small documents
chunks = None
if hasattr(app.state, 'doc_chunks') and filename in app.state.doc_chunks:
chunks = app.state.doc_chunks[filename]
# If we have all chunks, check if the document is small
is_small_doc = False
if chunks is not None:
# Heuristic: if number of chunks < 20, treat as small document
is_small_doc = len(chunks) < 20
if is_small_doc:
# Use all chunks as context
context_chunks = chunks
else:
# Use similarity search for large documents or if chunks not available
search_results = similarity_search(query, top_k=5)
context_chunks = search_results.get("documents", [[]])[0]
context = " ".join(context_chunks)
# Generate a more intelligent response based on the actual context
if not context_chunks:
answer = f"I couldn't find specific information in the document that directly answers your question: '{query}'. The document may not contain relevant content for this query."
else:
# Create a more contextual response based on the found chunks
answer = generate_contextual_response(query, context_chunks)
return {
"filename": filename,
"query": query,
"answer": answer,
"context_chunks": len(context_chunks)
}
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": f"Error processing query: {str(e)}"}
)
def generate_contextual_response(query: str, context_chunks: List[str]) -> str:
full_context = " ".join(context_chunks)
if len(full_context) > 8000:
sentences = full_context.split('. ')
if len(sentences) > 20:
relevant_sentences = sentences[:5] + sentences[-5:]
full_context = '. '.join(relevant_sentences)
# Use Mistral API for contextual response
from app.summarizer import DocumentSummarizer
summarizer = DocumentSummarizer()
prompt = f"You are a helpful assistant that answers questions based on document content. Provide comprehensive, accurate answers using the given context. Use plain text format without markdown. Provide detailed responses that fully address the user's question.\n\nQuestion: {query}\n\nContext: {full_context}\n\nAnswer (comprehensive, plain text):"
return summarizer.call_mistral_api(prompt)
def generate_simulated_response(query: str, full_context: str) -> str:
"""Generate a simulated response when Qwen2-0.5B is not available"""
# Analyze the query type and generate appropriate response
query_lower = query.lower()
if any(word in query_lower for word in ["key", "main", "important", "points", "summary"]):
# Extract key points from the context
sentences = full_context.split('. ')
key_points = []
for sentence in sentences[:min(5, len(sentences))]: # Allow up to 5 key points
if len(sentence.strip()) > 10: # Include more meaningful sentences
key_points.append(sentence.strip())
if key_points:
answer = f"Based on the document content, here are the key points:\n\n"
for i, point in enumerate(key_points, 1):
answer += f"{i}. {point}\n"
else:
answer = f"The document contains information about your query, but I couldn't extract specific key points from the available content."
elif any(word in query_lower for word in ["explain", "what is", "how", "why"]):
# Provide explanatory response with more content
if len(full_context) > 300:
# Take more content for explanations
relevant_part = full_context[:1000] + "..." if len(full_context) > 1000 else full_context
answer = f"Based on the document, here's what I found regarding your question '{query}':\n\n{relevant_part}"
else:
answer = f"The document provides the following information about your query: {full_context}"
elif any(word in query_lower for word in ["conclusion", "result", "find", "found"]):
# Look for conclusions or results
sentences = full_context.split('. ')
conclusion_sentences = []
for sentence in sentences:
if any(word in sentence.lower() for word in ["conclude", "result", "therefore", "thus", "finally", "overall"]):
conclusion_sentences.append(sentence)
if conclusion_sentences:
answer = f"Based on the document analysis, here are the conclusions related to your query:\n\n"
for sentence in conclusion_sentences[:3]: # Allow up to 3 conclusions
answer += f"• {sentence}\n"
else:
answer = f"The document contains relevant information about your query, but I couldn't identify specific conclusions from the available content."
else:
# General response with more content
if len(full_context) > 300:
# Take more sentences for general responses
sentences = full_context.split('. ')
summary_sentences = sentences[:min(8, len(sentences))] # Increased from 4 to 8 sentences
summary = '. '.join(summary_sentences)
answer = f"Regarding your question '{query}', the document contains the following relevant information:\n\n{summary}"
else:
answer = f"The document provides this information related to your query: {full_context}"
# Clean markdown formatting from the answer
answer = clean_markdown_formatting(answer)
return answer |