Spaces:
Runtime error
Runtime error
File size: 15,070 Bytes
d82600f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
from typing import List, Dict, Any
import asyncio
import re
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
import requests
import os
# Remove top-level import of transformers and torch
# from transformers import AutoTokenizer, AutoModelForCausalLM
# import torch
def clean_markdown_formatting(text: str) -> str:
"""
Clean markdown formatting from text and convert to plain text
Args:
text: Text that may contain markdown formatting
Returns:
Cleaned plain text without markdown
"""
if not text:
return text
# Remove markdown headers (# ## ### etc.)
text = re.sub(r'^#{1,6}\s+', '', text, flags=re.MULTILINE)
# Remove bold formatting (**text** or __text__)
text = re.sub(r'\*\*(.*?)\*\*', r'\1', text)
text = re.sub(r'__(.*?)__', r'\1', text)
# Remove italic formatting (*text* or _text_)
text = re.sub(r'\*(.*?)\*', r'\1', text)
text = re.sub(r'_(.*?)_', r'\1', text)
# Remove code formatting (`text`)
text = re.sub(r'`(.*?)`', r'\1', text)
# Remove links [text](url) -> text
text = re.sub(r'\[([^\]]+)\]\([^)]+\)', r'\1', text)
# Remove inline links [text] -> text
text = re.sub(r'\[([^\]]+)\]', r'\1', text)
# Remove strikethrough ~~text~~
text = re.sub(r'~~(.*?)~~', r'\1', text)
# Remove blockquotes (> text)
text = re.sub(r'^>\s+', '', text, flags=re.MULTILINE)
# Remove horizontal rules (---, ***, ___)
text = re.sub(r'^[-*_]{3,}$', '', text, flags=re.MULTILINE)
# Clean up extra whitespace
text = re.sub(r'\n\s*\n\s*\n', '\n\n', text) # Remove excessive line breaks
text = re.sub(r' +', ' ', text) # Remove multiple spaces
text = re.sub(r'\n +', '\n', text) # Remove leading spaces after line breaks
# Clean up the text
text = text.strip()
return text
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY", "")
if not MISTRAL_API_KEY:
print("[WARNING] MISTRAL_API_KEY environment variable is not set. API calls will fail.")
MISTRAL_API_URL = "https://api.mistral.ai/v1/chat/completions"
class DocumentSummarizer:
def __init__(self, chunk_size=1200, chunk_overlap=200):
"""
Initialize the document summarizer (CPU-optimized version)
Args:
llm_model: Qwen2-0.5B model instance (CPU-friendly)
chunk_size: Size of text chunks for processing (optimized for CPU)
chunk_overlap: Overlap between chunks (reduced for memory efficiency)
"""
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
separators=["\n\n", "\n", ". ", "! ", "? ", " ", ""]
)
def classify_document_size(self, text: str) -> Dict[str, Any]:
"""
Classify document as small or large based on content length
Args:
text: Document text content
Returns:
Dict with classification info
"""
words = len(text.split())
pages_estimate = words // 500 # Rough estimate: 500 words per page
is_large = pages_estimate > 15
return {
"is_large": is_large,
"word_count": words,
"page_estimate": pages_estimate,
"classification": "Large Document" if is_large else "Small Document"
}
def create_chunks(self, text: str) -> List[Document]:
"""
Create text chunks using RecursiveCharacterTextSplitter
Args:
text: Document text content
Returns:
List of Document chunks
"""
chunks = self.text_splitter.split_text(text)
return [Document(page_content=chunk, metadata={"chunk_id": i})
for i, chunk in enumerate(chunks)]
def _truncate_text_for_model(self, text: str, max_tokens: int = 4000) -> str:
"""
Truncate text to fit within model context limits (increased limits for better summaries)
Args:
text: Text to truncate
max_tokens: Maximum tokens allowed (increased from 2000)
Returns:
Truncated text
"""
return text[:max_tokens * 4]
def call_mistral_api(self, prompt: str) -> str:
headers = {
"Authorization": f"Bearer {MISTRAL_API_KEY}",
"Content-Type": "application/json"
}
data = {
"model": "mistral-medium",
"messages": [
{"role": "user", "content": prompt}
],
"max_tokens": 500,
"temperature": 0.3,
"top_p": 0.8
}
try:
response = requests.post(MISTRAL_API_URL, headers=headers, json=data, timeout=60)
response.raise_for_status()
result = response.json()
return result["choices"][0]["message"]["content"].strip()
except Exception as e:
print(f"[WARNING] Error calling Mistral API: {e}")
return "[Error: Unable to generate summary with Mistral AI API.]"
async def generate_chunk_summary(self, chunk: Document) -> str:
"""
Generate summary for a single chunk using Qwen2-0.5B (CPU-optimized)
Args:
chunk: Document chunk to summarize
Returns:
Summary text for the chunk
"""
truncated_content = self._truncate_text_for_model(chunk.page_content, max_tokens=3000)
prompt = f"""You are an expert document summarizer. Create comprehensive summaries that capture key information from text chunks. Provide summaries in plain text format without markdown formatting.\n\nText to summarize:\n{truncated_content}\n\nSummary:"""
response = self.call_mistral_api(prompt)
return clean_markdown_formatting(response)
def _simulate_chunk_summary(self, text: str) -> str:
"""
Simulate chunk summary generation (fallback when LLM not available)
Args:
text: Text to summarize
Returns:
Simulated summary
"""
# Create a balanced summary simulation
words = text.split()
if len(words) < 30:
return text
# Split into sentences and take key information
sentences = text.split('. ')
if len(sentences) <= 2:
return text
# For longer text, create a meaningful summary
if len(sentences) > 4:
# Take first sentence, middle sentence, and last sentence for context
summary_sentences = [sentences[0]] # Introduction
middle_idx = len(sentences) // 2
summary_sentences.append(sentences[middle_idx]) # Key point
summary_sentences.append(sentences[-1]) # Conclusion
else:
# For shorter text, take first 2 sentences
summary_sentences = sentences[:2]
summary = '. '.join(summary_sentences)
return summary + ('.' if not summary.endswith('.') else '')
async def summarize_small_document(self, chunks: List[Document]) -> str:
"""
Summarize small documents (≤15 pages) by summarizing all chunks and combining
Args:
chunks: List of document chunks
Returns:
Combined document summary
"""
print(f"Processing small document with {len(chunks)} chunks...")
# Generate summaries for all chunks
chunk_summaries = []
for i, chunk in enumerate(chunks):
print(f"Summarizing chunk {i+1}/{len(chunks)}...")
summary = await self.generate_chunk_summary(chunk)
chunk_summaries.append(summary)
# Combine all chunk summaries
combined_summary = " ".join(chunk_summaries)
# Generate final summary from combined summaries
final_summary = await self.generate_final_summary(combined_summary, "small")
return final_summary
async def summarize_large_document(self, chunks: List[Document]) -> str:
"""
Summarize large documents (>15 pages) using hierarchical summarization
Args:
chunks: List of document chunks
Returns:
Hierarchical document summary
"""
print(f"Processing large document with {len(chunks)} chunks using hierarchical summarization...")
# Step 1: Generate chunk-level summaries
chunk_summaries = []
for i, chunk in enumerate(chunks):
print(f"Generating chunk summary {i+1}/{len(chunks)}...")
summary = await self.generate_chunk_summary(chunk)
chunk_summaries.append(summary)
# Step 2: Group summaries into sections (for very large documents)
if len(chunk_summaries) > 50:
section_summaries = await self._create_section_summaries(chunk_summaries)
else:
section_summaries = chunk_summaries
# Step 3: Generate section-level summaries
section_level_summaries = []
for i, section in enumerate(section_summaries):
print(f"Generating section summary {i+1}/{len(section_summaries)}...")
if isinstance(section, list):
combined_section = " ".join(section)
else:
combined_section = section
section_summary = await self.generate_chunk_summary(
Document(page_content=combined_section, metadata={"section_id": i})
)
section_level_summaries.append(section_summary)
# Step 4: Generate final hierarchical summary
final_combined = " ".join(section_level_summaries)
final_summary = await self.generate_final_summary(final_combined, "large")
return final_summary
async def _create_section_summaries(self, chunk_summaries: List[str]) -> List[List[str]]:
"""
Group chunk summaries into sections for very large documents
Args:
chunk_summaries: List of chunk summaries
Returns:
List of section summaries (each section is a list of chunk summaries)
"""
section_size = max(10, len(chunk_summaries) // 10) # Create ~10 sections
sections = []
for i in range(0, len(chunk_summaries), section_size):
section = chunk_summaries[i:i + section_size]
sections.append(section)
return sections
async def generate_final_summary(self, combined_text: str, doc_type: str) -> str:
"""
Generate final summary from combined text using Qwen2-0.5B (CPU-optimized)
Args:
combined_text: Combined text to summarize
doc_type: Type of document (small/large)
Returns:
Final document summary
"""
prompt = f"""You are an expert document summarizer. Create a final summary for the following combined text. Provide a comprehensive, plain text summary.\n\nText:\n{combined_text}\n\nFinal Summary:"""
response = self.call_mistral_api(prompt)
return clean_markdown_formatting(response)
def _simulate_final_summary(self, combined_text: str, doc_type: str) -> str:
"""
Simulate final summary generation (fallback when LLM not available)
Args:
combined_text: Combined text to summarize
doc_type: Type of document (small/large)
Returns:
Simulated final summary
"""
# Create a balanced final summary
sentences = combined_text.split('. ')
if len(sentences) <= 3:
return combined_text
# For small documents, take key sentences for better context
if doc_type == "small":
if len(sentences) <= 5:
summary_sentences = sentences
else:
# Take introduction, key point, and conclusion for small docs
summary_sentences = [sentences[0]] # Introduction
middle_idx = len(sentences) // 2
summary_sentences.append(sentences[middle_idx]) # Key point
summary_sentences.append(sentences[-1]) # Conclusion
else:
# For large documents, create a comprehensive summary
if len(sentences) <= 6:
summary_sentences = sentences
else:
# Take introduction, 2 key points, and conclusion
summary_sentences = [sentences[0]] # Introduction
# Take 2 key points from different parts
quarter_idx = len(sentences) // 4
three_quarter_idx = (3 * len(sentences)) // 4
summary_sentences.append(sentences[quarter_idx]) # First key point
summary_sentences.append(sentences[three_quarter_idx]) # Second key point
summary_sentences.append(sentences[-1]) # Conclusion
summary = '. '.join(summary_sentences)
return summary + ('.' if not summary.endswith('.') else '')
async def summarize_document(self, text: str) -> Dict[str, Any]:
"""
Main method to summarize a document
Args:
text: Document text content
Returns:
Dict with summary results
"""
# Classify document size
classification = self.classify_document_size(text)
# Create chunks
chunks = self.create_chunks(text)
# Generate summary based on document size
if classification["is_large"]:
summary = await self.summarize_large_document(chunks)
processing_method = "Hierarchical Summarization"
else:
summary = await self.summarize_small_document(chunks)
processing_method = "Chunk-wise Summarization"
return {
"summary": summary,
"classification": classification["classification"],
"word_count": classification["word_count"],
"page_estimate": classification["page_estimate"],
"chunk_count": len(chunks),
"processing_method": processing_method
}
async def summarize_text(text: str, llm_model=None) -> Dict[str, Any]:
"""
Convenience function to summarize text
Args:
text: Text to summarize
llm_model: Optional LLM model instance
Returns:
Dict with summary results
"""
summarizer = DocumentSummarizer(llm_model=llm_model)
return await summarizer.summarize_document(text)
|