|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, \ |
|
MistralConfig, MistralModel, MistralForCausalLM |
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM |
|
|
|
|
|
class LlavaMistralConfig(MistralConfig): |
|
model_type = "llava_mistral" |
|
pretraining_tp = 1 |
|
|
|
|
|
class LlavaMistralModel(MistralModel, LlavaMetaModel): |
|
config_class = LlavaMistralConfig |
|
|
|
def __init__(self, config: MistralConfig): |
|
super(LlavaMistralModel, self).__init__(config) |
|
|
|
|
|
class LlavaMistralForCausalLM(MistralForCausalLM, LlavaMetaForCausalLM): |
|
config_class = LlavaMistralConfig |
|
|
|
def __init__(self, config): |
|
super(MistralForCausalLM, self).__init__(config) |
|
self.model = LlavaMistralModel(config) |
|
self.pretraining_tp = config.pretraining_tp |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def get_lm_head(self): |
|
return self.lm_head |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
labels, |
|
images |
|
) |
|
if self.training: |
|
( |
|
_, |
|
new_position_ids, |
|
new_attention_mask, |
|
_, |
|
new_inputs_embeds, |
|
new_labels, |
|
sorted_seqlens_in_batch |
|
) = self.repack_multimodal_data( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels |
|
) |
|
new_input_ids = None |
|
past_key_values = None |
|
else: |
|
new_attention_mask = attention_mask |
|
new_position_ids = position_ids |
|
new_inputs_embeds = inputs_embeds |
|
new_labels = labels |
|
sorted_seqlens_in_batch = attention_mask.sum(-1).int() |
|
new_input_ids = input_ids |
|
|
|
outputs = super().forward( |
|
input_ids=new_input_ids, |
|
attention_mask=new_attention_mask, |
|
position_ids=new_position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=new_inputs_embeds, |
|
labels=new_labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
seqlens_in_batch=sorted_seqlens_in_batch, |
|
) |
|
return outputs |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): |
|
images = kwargs.pop("images", None) |
|
_inputs = super().prepare_inputs_for_generation( |
|
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs |
|
) |
|
if images is not None: |
|
_inputs['images'] = images |
|
return _inputs |
|
|
|
AutoConfig.register("llava_mistral", LlavaMistralConfig) |
|
AutoModelForCausalLM.register(LlavaMistralConfig, LlavaMistralForCausalLM) |
|
|