|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Image processor class for RADIO.""" |
|
import math |
|
from copy import deepcopy |
|
from itertools import product |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
|
|
|
|
import PIL |
|
from PIL.Image import Image |
|
|
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict |
|
from transformers.image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format |
|
from transformers.image_utils import ( |
|
IMAGENET_DEFAULT_MEAN, |
|
IMAGENET_DEFAULT_STD, |
|
ChannelDimension, |
|
ImageInput, |
|
PILImageResampling, |
|
get_image_size, |
|
infer_channel_dimension_format, |
|
is_scaled_image, |
|
make_list_of_images, |
|
to_numpy_array, |
|
valid_images, |
|
) |
|
from transformers.utils import ( |
|
TensorType, |
|
is_tf_available, |
|
is_torch_available, |
|
is_torchvision_available, |
|
logging, |
|
requires_backends, |
|
) |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
if is_torchvision_available(): |
|
from torchvision.ops.boxes import batched_nms |
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
from tensorflow.experimental import numpy as tnp |
|
|
|
from ...tf_utils import flatten, shape_list |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def rank_print(s): |
|
rank = torch.distributed.get_rank() if torch.distributed.is_initialized() else 0 |
|
print(f"[Rank {rank}] {s}") |
|
|
|
class ImageProcessor(BaseImageProcessor): |
|
r""" |
|
Constructs an image processor. |
|
|
|
Args: |
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the |
|
`do_resize` parameter in the `preprocess` method. |
|
size (`dict`, *optional*, defaults to `{"longest_edge": 1024}`): |
|
Size of the output image after resizing. If "longest_edge" is specified, resizes the longest edge of the image to match |
|
`size["longest_edge"]` while maintaining the aspect ratio. If "width" and "height" are specified, resizes the image |
|
to that size, possibly changing the aspect ratio. Can be overridden by the `size` parameter in the |
|
`preprocess` method. |
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): |
|
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the |
|
`preprocess` method. |
|
do_rescale (`bool`, *optional*, defaults to `True`): |
|
Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the |
|
`do_rescale` parameter in the `preprocess` method. |
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): |
|
Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be |
|
overridden by the `rescale_factor` parameter in the `preprocess` method. |
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` |
|
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): |
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of |
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be |
|
overridden by the `image_mean` parameter in the `preprocess` method. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): |
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the |
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
do_pad (`bool`, *optional*, defaults to `True`): |
|
Whether to pad the image to the specified `pad_size`. Can be overridden by the `do_pad` parameter in the |
|
`preprocess` method. |
|
pad_size (`dict`, *optional*, defaults to `{"height": 1024, "width": 1024}`): |
|
Size of the output image after padding. Can be overridden by the `pad_size` parameter in the `preprocess` |
|
method. |
|
pad_value (`float` or `Iterable[float]`, *optional*, defaults to `0.`): |
|
Value of padded pixels. |
|
pad_multiple (`int`, *optional*, defaults to `None`): |
|
Pad to a multiple of specified number. |
|
do_convert_rgb (`bool`, *optional*, defaults to `True`): |
|
Whether to convert the image to RGB. |
|
""" |
|
|
|
model_input_names = ["pixel_values"] |
|
|
|
def __init__( |
|
self, |
|
do_resize: bool = True, |
|
size: Dict[str, int] = None, |
|
resample: PILImageResampling = PILImageResampling.BILINEAR, |
|
do_rescale: bool = True, |
|
rescale_factor: Union[int, float] = 1 / 255, |
|
do_normalize: bool = True, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_pad: bool = True, |
|
pad_size: int = None, |
|
pad_multiple: int = None, |
|
pad_value: Optional[Union[float, List[float]]] = 0., |
|
do_convert_rgb: bool = True, |
|
**kwargs, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
x = 0 |
|
size = size if size is not None else {"longest_edge": 1024} |
|
size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size |
|
|
|
if pad_size is not None and pad_multiple is not None: |
|
raise ValueError("pad_size and pad_multiple should not be set at the same time.") |
|
|
|
pad_size = pad_size if pad_size is not None else {"height": 1024, "width": 1024} if pad_multiple is not None else None |
|
if do_pad: |
|
pad_size = get_size_dict(pad_size, default_to_square=True) |
|
|
|
self.do_resize = do_resize |
|
self.size = size |
|
self.resample = resample |
|
self.do_rescale = do_rescale |
|
self.rescale_factor = rescale_factor |
|
self.do_normalize = do_normalize |
|
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN |
|
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD |
|
self.do_pad = do_pad |
|
self.pad_multiple = pad_multiple |
|
self.pad_size = pad_size |
|
self.pad_value = tuple(pad_value) if isinstance(pad_value, list) else pad_value |
|
self.do_convert_rgb = do_convert_rgb |
|
self._valid_processor_keys = [ |
|
"images", |
|
"segmentation_maps", |
|
"do_resize", |
|
"size", |
|
"resample", |
|
"do_rescale", |
|
"rescale_factor", |
|
"do_normalize", |
|
"image_mean", |
|
"image_std", |
|
"do_pad", |
|
"pad_size", |
|
"do_convert_rgb", |
|
"return_tensors", |
|
"data_format", |
|
"input_data_format", |
|
] |
|
|
|
def pad_image( |
|
self, |
|
image: np.ndarray, |
|
pad_size: Dict[str, int], |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Pad an image to `(pad_size["height"], pad_size["width"])` to the right and bottom. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to pad. |
|
pad_size (`Dict[str, int]`): |
|
Size of the output image after padding. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The data format of the image. Can be either "channels_first" or "channels_last". If `None`, the |
|
`data_format` of the `image` will be used. |
|
input_data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format of the input image. If not provided, it will be inferred. |
|
""" |
|
output_height, output_width = pad_size["height"], pad_size["width"] |
|
input_height, input_width = get_image_size(image, channel_dim=input_data_format) |
|
|
|
pad_width = output_width - input_width |
|
pad_height = output_height - input_height |
|
|
|
padded_image = pad( |
|
image, |
|
((0, pad_height), (0, pad_width)), |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
constant_values=self.pad_value, |
|
**kwargs, |
|
) |
|
return padded_image |
|
|
|
def _get_preprocess_shape(self, old_shape: Tuple[int, int], longest_edge: int): |
|
""" |
|
Compute the output size given input size and target long side length. |
|
""" |
|
oldh, oldw = old_shape |
|
scale = longest_edge * 1.0 / max(oldh, oldw) |
|
newh, neww = oldh * scale, oldw * scale |
|
newh = int(newh + 0.5) |
|
neww = int(neww + 0.5) |
|
return (newh, neww) |
|
|
|
def resize( |
|
self, |
|
image: np.ndarray, |
|
size: Dict[str, int], |
|
resample: PILImageResampling = PILImageResampling.BICUBIC, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Resize an image to `(size["height"], size["width"])`. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to resize. |
|
size (`Dict[str, int]`): |
|
Dictionary in the format `{"longest_edge": int}` or `{"width": int, "height": int}` specifying the size |
|
of the output image. If "longest_edge" is specified, resizes the longest edge of the image to match |
|
`size["longest_edge"]` while maintaining the aspect ratio. If "width" and "height" are specified, resizes the image |
|
to that size, possibly changing the aspect ratio. |
|
resample: |
|
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. |
|
data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the output image. If unset, the channel dimension format of the input |
|
image is used. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
|
|
Returns: |
|
`np.ndarray`: The resized image. |
|
""" |
|
size = get_size_dict(size) |
|
if "longest_edge" not in size: |
|
if "width" not in size or "height" not in size: |
|
raise ValueError(f"The `size` dictionary must contain the key `longest_edge`, or `width` and `height`. Got {size.keys()}") |
|
input_size = get_image_size(image, channel_dim=input_data_format) |
|
if "longest_edge" in size: |
|
output_height, output_width = self._get_preprocess_shape(input_size, size["longest_edge"]) |
|
else: |
|
output_height, output_width = size["height"], size["width"] |
|
return resize( |
|
image, |
|
size=(output_height, output_width), |
|
resample=resample, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
**kwargs, |
|
) |
|
|
|
def _preprocess( |
|
self, |
|
image: ImageInput, |
|
do_resize: bool, |
|
do_rescale: bool, |
|
do_normalize: bool, |
|
size: Optional[Dict[str, int]] = None, |
|
resample: PILImageResampling = None, |
|
rescale_factor: Optional[float] = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_pad: Optional[bool] = None, |
|
pad_size: Optional[Dict[str, int]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
): |
|
if do_resize: |
|
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) |
|
reshaped_input_size = get_image_size(image, channel_dim=input_data_format) |
|
|
|
if do_rescale: |
|
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) |
|
|
|
if do_normalize: |
|
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) |
|
|
|
if do_pad: |
|
if self.pad_multiple: |
|
h, w = get_image_size(image, channel_dim=input_data_format) |
|
pad_size = { |
|
"height": math.ceil(h / self.pad_multiple) * self.pad_multiple, |
|
"width": math.ceil(w / self.pad_multiple) * self.pad_multiple, |
|
} |
|
|
|
image = self.pad_image(image=image, pad_size=pad_size, input_data_format=input_data_format) |
|
|
|
return image, reshaped_input_size |
|
|
|
def _preprocess_image( |
|
self, |
|
image: ImageInput, |
|
do_resize: Optional[bool] = None, |
|
size: Dict[str, int] = None, |
|
resample: PILImageResampling = None, |
|
do_rescale: bool = None, |
|
rescale_factor: Optional[float] = None, |
|
do_normalize: Optional[bool] = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_pad: Optional[bool] = None, |
|
pad_size: Optional[Dict[str, int]] = None, |
|
do_convert_rgb: Optional[bool] = None, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
) -> Tuple[np.ndarray, Tuple[int, int], Tuple[int, int]]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(image, Image): |
|
|
|
input_data_format = ChannelDimension.LAST |
|
|
|
|
|
|
|
if do_convert_rgb: |
|
image = convert_to_rgb(image) |
|
|
|
|
|
image_ = image |
|
image = to_numpy_array(image) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(image.shape) == 2: |
|
h, w = image.shape |
|
ret = np.empty((h, w, 3), dtype=np.uint8) |
|
ret[:, :, 0] = image |
|
ret[:, :, 1] = image |
|
ret[:, :, 2] = image |
|
image = ret |
|
rank_print(f"preprocess new image shape={image.shape}") |
|
elif len(image.shape) == 3 and image.shape[-1] == 1: |
|
ret = np.empty((h, w, 3), dtype=np.uint8) |
|
ret[:, :, 0] = image[:, :, 0] |
|
ret[:, :, 1] = image[:, :, 0] |
|
ret[:, :, 2] = image[:, :, 0] |
|
image = ret |
|
rank_print(f"preprocess new image shape={image.shape}") |
|
|
|
if is_scaled_image(image) and do_rescale: |
|
logger.warning_once( |
|
"It looks like you are trying to rescale already rescaled images. If the input" |
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." |
|
) |
|
|
|
if input_data_format is None: |
|
input_data_format = infer_channel_dimension_format(image) |
|
|
|
original_size = get_image_size(image, channel_dim=input_data_format) |
|
|
|
image, reshaped_input_size = self._preprocess( |
|
image=image, |
|
do_resize=do_resize, |
|
size=size, |
|
resample=resample, |
|
do_rescale=do_rescale, |
|
rescale_factor=rescale_factor, |
|
do_normalize=do_normalize, |
|
image_mean=image_mean, |
|
image_std=image_std, |
|
do_pad=do_pad, |
|
pad_size=pad_size, |
|
input_data_format=input_data_format, |
|
) |
|
|
|
if data_format is not None: |
|
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) |
|
|
|
|
|
|
|
|
|
if do_convert_rgb and image.shape[0] == 1: |
|
c, h, w = image.shape |
|
ret = np.empty((3, h, w), dtype=np.uint8) |
|
ret[0, :, :] = image[0, :, :] |
|
ret[1, :, :] = image[0, :, :] |
|
ret[2, :, :] = image[0, :, :] |
|
image = ret |
|
rank_print(f"preprocess final: {image.shape}") |
|
|
|
return image, original_size, reshaped_input_size |
|
|
|
def preprocess( |
|
self, |
|
images: ImageInput, |
|
do_resize: Optional[bool] = None, |
|
size: Optional[Dict[str, int]] = None, |
|
resample: Optional["PILImageResampling"] = None, |
|
do_rescale: Optional[bool] = None, |
|
rescale_factor: Optional[Union[int, float]] = None, |
|
do_normalize: Optional[bool] = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_pad: Optional[bool] = None, |
|
pad_size: Optional[Dict[str, int]] = None, |
|
do_convert_rgb: Optional[bool] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
data_format: ChannelDimension = ChannelDimension.FIRST, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Preprocess an image or batch of images. |
|
|
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
Whether to resize the image. |
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`): |
|
Controls the size of the image after `resize`. The longest edge of the image is resized to |
|
`size["longest_edge"]` whilst preserving the aspect ratio. |
|
resample (`PILImageResampling`, *optional*, defaults to `self.resample`): |
|
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. |
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
Whether to rescale the image pixel values by rescaling factor. |
|
rescale_factor (`int` or `float`, *optional*, defaults to `self.rescale_factor`): |
|
Rescale factor to apply to the image pixel values. |
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
Whether to normalize the image. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean to normalize the image by if `do_normalize` is set to `True`. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation to normalize the image by if `do_normalize` is set to `True`. |
|
do_pad (`bool`, *optional*, defaults to `self.do_pad`): |
|
Whether to pad the image. |
|
pad_size (`Dict[str, int]`, *optional*, defaults to `self.pad_size`): |
|
Controls the size of the padding applied to the image. The image is padded to `pad_size["height"]` and |
|
`pad_size["width"]` if `do_pad` is set to `True`. |
|
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): |
|
Whether to convert the image to RGB. |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
The type of tensors to return. Can be one of: |
|
- Unset: Return a list of `np.ndarray`. |
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. |
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. |
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- Unset: Use the channel dimension format of the input image. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
""" |
|
do_resize = do_resize if do_resize is not None else self.do_resize |
|
size = size if size is not None else self.size |
|
size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size |
|
resample = resample if resample is not None else self.resample |
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale |
|
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor |
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize |
|
image_mean = image_mean if image_mean is not None else self.image_mean |
|
image_std = image_std if image_std is not None else self.image_std |
|
do_pad = do_pad if do_pad is not None else self.do_pad |
|
pad_size = pad_size if pad_size is not None else self.pad_size |
|
if do_pad: |
|
pad_size = get_size_dict(pad_size, default_to_square=True) |
|
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb |
|
|
|
images = make_list_of_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
images, original_sizes, reshaped_input_sizes = zip( |
|
*( |
|
self._preprocess_image( |
|
image=img, |
|
do_resize=do_resize, |
|
size=size, |
|
resample=resample, |
|
do_rescale=do_rescale, |
|
rescale_factor=rescale_factor, |
|
do_normalize=do_normalize, |
|
image_mean=image_mean, |
|
image_std=image_std, |
|
do_pad=do_pad, |
|
pad_size=pad_size, |
|
do_convert_rgb=do_convert_rgb, |
|
data_format=data_format, |
|
input_data_format=input_data_format, |
|
) |
|
for img in images |
|
) |
|
) |
|
|
|
data = { |
|
"pixel_values": images, |
|
"original_sizes": original_sizes, |
|
"reshaped_input_sizes": reshaped_input_sizes, |
|
} |
|
|
|
return BatchFeature(data=data, tensor_type=return_tensors) |
|
|