|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Image processor class for SigLIP.""" |
|
|
|
from typing import Dict, List, Optional, Union |
|
|
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict |
|
from transformers.image_transforms import ( |
|
center_crop, |
|
resize, |
|
rescale, |
|
normalize, |
|
to_channel_dimension_format, |
|
get_resize_output_image_size, |
|
get_channel_dimension_axis, |
|
convert_to_rgb, |
|
) |
|
from transformers.image_utils import ( |
|
IMAGENET_STANDARD_MEAN, |
|
IMAGENET_STANDARD_STD, |
|
ChannelDimension, |
|
ImageInput, |
|
PILImageResampling, |
|
infer_channel_dimension_format, |
|
|
|
make_list_of_images, |
|
to_numpy_array, |
|
valid_images, |
|
) |
|
from transformers.utils import TensorType, is_vision_available, logging |
|
import numpy as np |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def is_scaled_image(image: np.ndarray) -> bool: |
|
""" |
|
Checks to see whether the pixel values have already been rescaled to [0, 1]. |
|
""" |
|
if image.dtype == np.uint8: |
|
return False |
|
|
|
|
|
return np.min(image) >= 0 and np.max(image) <= 1 |
|
|
|
|
|
if is_vision_available(): |
|
import PIL |
|
|
|
|
|
class SiglipImageProcessor(BaseImageProcessor): |
|
r""" |
|
Constructs a SigLIP image processor. |
|
|
|
Args: |
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by |
|
`do_resize` in the `preprocess` method. |
|
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`): |
|
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. |
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): |
|
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. |
|
do_rescale (`bool`, *optional*, defaults to `True`): |
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in |
|
the `preprocess` method. |
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): |
|
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` |
|
method. |
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the image by the specified mean and standard deviation. Can be overridden by |
|
`do_normalize` in the `preprocess` method. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`): |
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of |
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`): |
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the |
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
""" |
|
|
|
model_input_names = ["pixel_values"] |
|
|
|
def __init__( |
|
self, |
|
do_resize: bool = True, |
|
size: Dict[str, int] = None, |
|
resample: PILImageResampling = PILImageResampling.BICUBIC, |
|
do_rescale: bool = True, |
|
rescale_factor: Union[int, float] = 1 / 255, |
|
do_normalize: bool = True, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_convert_rgb: bool = True, |
|
**kwargs, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
size = size if size is not None else {"shortest_edge": 384} |
|
size = get_size_dict(size, default_to_square=False) |
|
image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN |
|
image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD |
|
|
|
self.do_resize = do_resize |
|
self.size = size |
|
self.resample = resample |
|
self.do_rescale = do_rescale |
|
self.rescale_factor = rescale_factor |
|
self.do_normalize = do_normalize |
|
self.image_mean = image_mean |
|
self.image_std = image_std |
|
self.do_convert_rgb = do_convert_rgb |
|
|
|
def resize( |
|
self, |
|
image: np.ndarray, |
|
size: Dict[str, int], |
|
resample: PILImageResampling = PILImageResampling.BICUBIC, |
|
data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> np.ndarray: |
|
""" |
|
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge |
|
resized to keep the input aspect ratio. |
|
|
|
Args: |
|
image (`np.ndarray`): |
|
Image to resize. |
|
size (`Dict[str, int]`): |
|
Size of the output image. |
|
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): |
|
Resampling filter to use when resiizing the image. |
|
data_format (`str` or `ChannelDimension`, *optional*): |
|
The channel dimension format of the image. If not provided, it will be the same as the input image. |
|
""" |
|
|
|
default_to_square = True |
|
if "shortest_edge" in size: |
|
size = size["shortest_edge"] |
|
default_to_square = False |
|
elif "height" in size and "width" in size: |
|
size = (size["height"], size["width"]) |
|
else: |
|
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") |
|
output_size = get_resize_output_image_size(image, size=size, default_to_square=default_to_square) |
|
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs) |
|
|
|
def preprocess( |
|
self, |
|
images: ImageInput, |
|
do_resize: bool = None, |
|
size: Dict[str, int] = None, |
|
resample: PILImageResampling = None, |
|
do_rescale: bool = None, |
|
rescale_factor: float = None, |
|
do_normalize: bool = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_convert_rgb: bool = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, |
|
input_data_format: Optional[Union[str, ChannelDimension]] = None, |
|
**kwargs, |
|
) -> PIL.Image.Image: |
|
""" |
|
Preprocess an image or batch of images. |
|
|
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`): |
|
Whether to resize the image. |
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`): |
|
Size of the image after resizing. |
|
resample (`int`, *optional*, defaults to `self.resample`): |
|
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only |
|
has an effect if `do_resize` is set to `True`. |
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): |
|
Whether to rescale the image. |
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): |
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`. |
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): |
|
Whether to normalize the image. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to |
|
`True`. |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
The type of tensors to return. Can be one of: |
|
- Unset: Return a list of `np.ndarray`. |
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. |
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. |
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): |
|
The channel dimension format for the output image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- Unset: Use the channel dimension format of the input image. |
|
input_data_format (`ChannelDimension` or `str`, *optional*): |
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred |
|
from the input image. Can be one of: |
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. |
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. |
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. |
|
""" |
|
do_resize = do_resize if do_resize is not None else self.do_resize |
|
size = size if size is not None else self.size |
|
size = get_size_dict(size, param_name="size", default_to_square=False) |
|
resample = resample if resample is not None else self.resample |
|
|
|
|
|
|
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale |
|
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor |
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize |
|
image_mean = image_mean if image_mean is not None else self.image_mean |
|
image_std = image_std if image_std is not None else self.image_std |
|
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb |
|
|
|
|
|
images = make_list_of_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
if do_resize and size is None: |
|
raise ValueError("Size must be specified if do_resize is True.") |
|
|
|
if do_rescale and rescale_factor is None: |
|
raise ValueError("Rescale factor must be specified if do_rescale is True.") |
|
|
|
if do_normalize and (image_mean is None or image_std is None): |
|
raise ValueError("Image mean and std must be specified if do_normalize is True.") |
|
|
|
|
|
if do_convert_rgb: |
|
images = [convert_to_rgb(image) for image in images] |
|
|
|
|
|
images = [to_numpy_array(image) for image in images] |
|
|
|
if is_scaled_image(images[0]) and do_rescale: |
|
logger.warning_once( |
|
"It looks like you are trying to rescale already rescaled images. If the input" |
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if do_resize: |
|
images = [self.resize(image=image, size=size, resample=resample) for image in images] |
|
|
|
if do_rescale: |
|
images = [rescale(image=image, scale=rescale_factor) for image in images] |
|
|
|
if do_normalize: |
|
output_images = [] |
|
for image in images: |
|
if get_channel_dimension_axis(image) == 0: |
|
image = image.transpose((1, 2, 0)) |
|
if image.shape[-1] == 1: |
|
image = np.dstack((image, image, image)) |
|
output_images.append(image) |
|
images = output_images |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images = [normalize(image=image, mean=image_mean, std=image_std) for image in images] |
|
|
|
images = [to_channel_dimension_format(image, data_format) for image in images] |
|
|
|
|
|
data = {"pixel_values": images} |
|
return BatchFeature(data=data, tensor_type=return_tensors) |
|
|