File size: 8,673 Bytes
d491737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75d2880
d491737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b42a04
 
 
 
 
 
 
 
d491737
 
 
bef892f
c91739d
d491737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c51318
 
 
 
d491737
6c51318
 
 
 
d491737
6c51318
d491737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import streamlit as st
import numpy as np
import random

from gist1.vqvae_gpt import VQVAETransformer
from utils.misc import  load_params
from utils.isoutil import plot_isovist_sequence_grid


import torch


if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")


model_paths = ["./models/vqvaegpt_1.pth",
               "./models/vqvaegpt_2.pth",
               "./models/vqvaegpt_3.pth"]
cfg_path = "./models/param.json"
cfg = load_params(cfg_path)



@st.cache_resource
def get_model(index):
    TransformerPath = model_paths[index]
    transformer = VQVAETransformer(cfg)
    transformer.load_state_dict(torch.load(TransformerPath, map_location=device))
    transformer = transformer.to(device)
    transformer.eval()
    return transformer


def split_indices(indices, loc_len=1, isovist_len=16):
    seg_length = loc_len + isovist_len
    batch_size = indices.shape[0]
    splits = indices.reshape(batch_size, -1, seg_length) # BS(L+I)
    ilocs, iisovists = torch.split(splits, [loc_len, isovist_len], dim=2) # BSL , BSI
    return ilocs, iisovists

@st.cache_data
def indices_to_loc(_model, indices):
    indices = torch.tensor(indices).long().view(1,-1).to(device)
    return _model.indices_to_loc(indices).detach().cpu().numpy()

@st.cache_data
def indices_to_isovist(_model, indices):
    indices = torch.tensor(indices).long().view(1,-1).to(device)
    return _model.z_to_isovist(indices).detach().cpu().numpy()

def indices_to_loc_isovist(model, indices):
    ilocs, iisovists = split_indices(indices, loc_len=1, isovist_len=16)
    locs = []
    sampled_isovists = []
    for i in range(iisovists.shape[1]): 
        # iloc = ilocs[:, i, :]
        # locs.append(model.indices_to_loc(iloc).detach().cpu().numpy()) # S X BL
        # iisovist = iisovists[:, i, :] # BI
        # sampled_isovists.append(model.z_to_isovist(iisovist).detach().cpu().numpy()) # S X BCW

        iloc = ilocs[:, i, :].squeeze().tolist()
        iisovist = iisovists[:, i, :].squeeze().tolist()
        iisovist = tuple(iisovist)
        locs.append(indices_to_loc(model, iloc))
        sampled_isovists.append(indices_to_isovist(model, iisovist))
        # sampled_isovists.append(code_to_isovist(model, iisovist))

    locs = np.stack(locs, axis=1)
    sampled_isovists = np.stack(sampled_isovists, axis=1) #BSCW
    return locs, sampled_isovists

def plot_isovist(locs, sampled_isovists, lim, alpha, calculate_lim):
    loc = locs[0]
    sampled_isovist = sampled_isovists[0]
    sampled_isovist = np.squeeze(sampled_isovist, axis=1)
    fig = plot_isovist_sequence_grid(loc, sampled_isovist, figsize=(8, 6), center=True, lim=lim, alpha=alpha, calculate_lim=calculate_lim).transpose((1, 2, 0))
    return fig

def sample(model, start_indices, top_k=100, seed=0, seq_length=None, zeroing=False, lim=1.5, alpha=0.02, loc_init=False, calculate_lim=False):
    start_indices = start_indices.long().to(device)
    steps = seq_length * (1 + 16) # loc dim + latent 
    if loc_init:
        steps -= 1
    sample_indices = model.sample_memorized(start_indices, steps=steps, top_k=top_k, seed=seed, zeroing=zeroing)
    locs, sampled_isovists = indices_to_loc_isovist(model, sample_indices)
    im = plot_isovist(locs, sampled_isovists, lim, alpha, calculate_lim)
    return im, sample_indices


def plot_indices(model, indices, lim=1.5, alpha=0.02, calculate_lim=False):
    locs, sampled_isovists = indices_to_loc_isovist(model, indices)
    im = plot_isovist(locs, sampled_isovists, lim, alpha, calculate_lim)
    return im

st.write('''<style>

[data-testid="column"] {
    width: calc(33.3333% - 1rem) !important;
    flex: 1 1 calc(33.3333% - 1rem) !important;
    min-width: calc(33% - 1rem) !important;
}
</style>''', unsafe_allow_html=True)


st.subheader("GIsT: Generative Isovist Transformers")
st.text("Mikhael Johanes, Jeffrey Huang | EPFL Media and Design Lab")
st.write("[[paper](https://papers.cumincad.org/data/works/att/ecaade2023_392.pdf)]")
st.text("Pres [init] to initiate or start over")
options =["Base model", "Palladio", "Mies"]

if 'model' not in st.session_state:
    st.session_state.model = None

if st.session_state.model is not None:
    index = options.index(st.session_state.model)
else:
    index = 0

option = st.selectbox("Select model",(options), index=index)
st.session_state.model = option


if 'tokens'  not in st.session_state:
    st.session_state.tokens = None

if 'image' not in st.session_state:
    st.session_state.image = np.ones((600,800,3),dtype=np.uint8) * 240

if 'seed' not in st.session_state:
    st.session_state.seed = random.randint(0, 10000000)



index = options.index(st.session_state.model)
transformer = get_model(index)


e = 1025
ne = 1026
n = 1027
nw = 1028
w = 1029
sw = 1030
s = 1031
se = 1032

alpha = 0.015
lim = 2.0

init = st.button('init')

cont = st.container()




rows = []
for i in range(3):
    rows.append(st.columns(3, gap='small'))




upleft = rows[0][0].button('$\\nwarrow$', use_container_width=True)
up = rows[0][1].button('$\\uparrow$', use_container_width=True)
upright = rows[0][2].button('$\\nearrow$', use_container_width=True)
left = rows[1][0].button('$\\leftarrow$', use_container_width=True)
undo = rows[1][1].button('undo', use_container_width=True)
right = rows[1][2].button('$\\rightarrow$', use_container_width=True)
downleft = rows[2][0].button('$\\swarrow$', use_container_width=True)
down = rows[2][1].button('$\\downarrow$', use_container_width=True)
downright = rows[2][2].button('$\\searrow$', use_container_width=True)

# st.text("use desktop mode for best experiece in mobile device")

seed = st.number_input('seed', 0, 10000000, st.session_state.seed,1)


def gen_next(sample_indices, dir):
    # seed = st.session_state.seed
    sample_indices = torch.concat([sample_indices, torch.tensor([[dir]]).to(device)],dim=1)
    im, sample_indices = sample(transformer, sample_indices, top_k=50, seq_length=1, seed=seed,  lim=lim, alpha=alpha, loc_init=True, calculate_lim=True)
    return im, sample_indices

def undo_gen(sample_indices):
    sample_indices = sample_indices[:, :-17]
    im = plot_indices(transformer, sample_indices, lim=lim,alpha=alpha, calculate_lim=True)
    return im, sample_indices

if init:
    st.session_state.tokens = torch.ones((1, 1)).long().to(device) * 1024
    tokens = st.session_state.tokens
    # seed = st.session_state.seed
    im, sample_indices = sample(transformer, tokens, top_k=50, seq_length=1, seed=seed,  lim=lim, alpha=alpha, loc_init=True)
    st.session_state.image = im
    st.session_state.tokens = sample_indices
    st.session_state.lim = 2.0

if upleft:
    if st.session_state.tokens is not None:
        st.session_state.image, st.session_state.tokens = gen_next(st.session_state.tokens, nw)
    else:
        st.warning('Please init the generation')

if up:
    if st.session_state.tokens is not None:
        st.session_state.image, st.session_state.tokens = gen_next(st.session_state.tokens, n)
    else:
        st.warning('Please init the generation')

if upright:
    if st.session_state.tokens is not None:
        st.session_state.image, st.session_state.tokens = gen_next(st.session_state.tokens, ne)
    else:
        st.warning('Please init the generation')

if left:
    if st.session_state.tokens is not None:
        st.session_state.image, st.session_state.tokens = gen_next(st.session_state.tokens, w)
    else:
        st.warning('Please init the generation')

if right:
    if st.session_state.tokens is not None:
        st.session_state.image, st.session_state.tokens = gen_next(st.session_state.tokens, e)
    else:
        st.warning('Please init the generation')

if downleft:
    if st.session_state.tokens is not None:
        st.session_state.image, st.session_state.tokens = gen_next(st.session_state.tokens, sw)
    else:
        st.warning('Please init the generation')

if down:
    if st.session_state.tokens is not None:
        st.session_state.image, st.session_state.tokens = gen_next(st.session_state.tokens, s)
    else:
        st.warning('Please init the generation')

if downright:
    if st.session_state.tokens is not None:
        st.session_state.image, st.session_state.tokens = gen_next(st.session_state.tokens, se)
    else:
        st.warning('Please init the generation')


if undo:
    if st.session_state.tokens is not None:
        if st.session_state.tokens.shape[1] >= 34:
            st.session_state.image, st.session_state.tokens = undo_gen(st.session_state.tokens)
        else:
            st.warning('no more step to undo')
    else:
        st.warning('Please init the generation')



cont.image(st.session_state.image)