File size: 9,492 Bytes
d491737
 
 
 
 
 
0526506
d491737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import torch
import torch.nn as nn
import torch.nn.functional as F
from gist1.gpt import GPT
from gist1.vqvae import VQVAE

from utils.misc import load_params


class VQVAETransformer(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.vqvae = self.load_vqvae(args)
        self.transformer = self.load_transformer(args)
        # self.sos_token = self.get_sos_token(args)
        self.pkeep = args['pkeep']
        self.vqvae_vocab_size = args['vocab_size']
        self.loc_vocab_size = args['loc_vocab_size']
        self.block_size = args['block_size']

    def load_vqvae(self, args):
        # VQVAE_path = args['vqvae_checkpoint']
        # VQVAE_cfg = args['vqvae_cfg']
        # cfg = load_params(VQVAE_cfg)
        # seed= cfg['seed']
        # torch.manual_seed(seed)
        num_hiddens = args['vqvae_num_hiddens']
        num_residual_layers = args['vqvae_num_residual_layers']
        num_residual_hiddens = args['vqvae_num_residual_hiddens']
        num_embeddings = args['latent_dim']
        latent_dim = args['vqvae_latent_dim']
        commitment_cost = args['vqvae_commitment_cost']
        decay = args['vqvae_decay']
        model = VQVAE(num_hiddens, num_residual_layers, num_residual_hiddens,
                num_embeddings, latent_dim, commitment_cost,
                decay)
        # model.load_state_dict(torch.load(VQVAE_path))
        # model = model.eval()
        
        # update args from vqvae cfg
        args['vocab_size'] = num_embeddings

        return model

    def load_transformer(self, args):
        # seed= args['seed']
        # torch.manual_seed(seed)
        latent_dim = args['latent_dim']
        heads = args['heads']
        N = args['N']
        block_size = args['block_size']
        vocab_size = args['vocab_size'] + args['loc_vocab_size']
        model = GPT(vocab_size, latent_dim, N, heads, block_size)
        return model
    
    @torch.no_grad()
    def encode_to_z(self, x):
        quantized, indices = self.vqvae.encode(x)
        indices = indices.view(quantized.shape[0], -1)
        return quantized, indices

    @ torch.no_grad()
    def z_to_isovist(self, indices):
        indices[indices > self.vqvae_vocab_size-1] = self.vqvae_vocab_size-1
        embedding_dim = self.vqvae.vq.embedding_dim
        ix_to_vectors = self.vqvae.vq.embedding(indices).reshape(indices.shape[0], -1, embedding_dim)
        ix_to_vectors = ix_to_vectors.permute(0, 2, 1)
        isovist = self.vqvae.decode(ix_to_vectors)
        return isovist
    
    def loc_to_indices(self, x):
        starting_index = self.vqvae_vocab_size
        indices = x.long() + starting_index
        return indices
    
    def indices_to_loc(self, indices):
        starting_index = self.vqvae_vocab_size
        locs = indices - starting_index
        locs[locs < 0] = 0
        locs[locs > (self.loc_vocab_size-1)] = self.loc_vocab_size-1
        return locs
    
    def seq_encode(self, locs, isovists):
        # BSW
        indices_seq = []
        # indices_loc = []
        for i in range(isovists.shape[1]): # iterate trought the sequence
            loc = locs[:, i].unsqueeze(1) # BL
            indices_seq.append(self.loc_to_indices(loc))
            isovist = isovists[:, i, :].unsqueeze(1) # BCW
            _, indices = self.encode_to_z(isovist)
            indices_seq.append(indices)
        indices = torch.cat(indices_seq, dim=1)
        return indices


    def forward(self, indices):
        device = indices.device
        # indices = self.seq_encode(locs, isovists)


        if self.training and self.pkeep < 1.0:
            mask = torch.bernoulli(self.pkeep*torch.ones(indices.shape, device=device))
            mask = mask.round().to(dtype=torch.int64)
            random_indices = torch.randint_like(indices,  self.vqvae_vocab_size) # doesn't include sos token
            new_indices = mask*indices + (1-mask)*random_indices
        else:
            new_indices = indices


        target = indices[:, 1:]


        logits =  self.transformer(new_indices[:, :-1])

               

        return logits, target

    
    def top_k_logits(self, logits, k):
        v, ix = torch.topk(logits, k)
        out = logits.clone()
        out[out < v[..., [-1]]] = -float("inf")
        return out


   
    def sample(self, x, steps, temp=1.0, top_k=100, seed=None, step_size=17, zeroing=False):
        device = x.device
        is_train = False
        if self.transformer.training == True:
            is_train = True    
        self.transformer.eval()
        block_size = self.block_size
        generator = None
        if seed is not None:
            generator = torch.Generator(device).manual_seed(seed)
        for k in range(steps):
            if x.size(1) < block_size:
                x_cond = x
            else:
                remain = step_size - (x.size(1) % step_size)
                x_cond = x[:, -(block_size-remain):]  # crop context if needed
                if zeroing:
                    x_cond = x_cond.clone()
                    x_cond[:, 0] = self.vqvae_vocab_size
            logits = self.transformer(x_cond)
            logits = logits[:, -1, :] / temp

            if top_k is not None:
                logits = self.top_k_logits(logits, top_k)

            probs = F.softmax(logits, dim = -1)

            ix = torch.multinomial(probs, num_samples=1, generator=generator)

            x = torch.cat((x, ix), dim=1)

        if is_train == True:
            self.transformer.train()

        return x
    

    def get_loc(self, ploc, dir):
        if dir == 0:
            loc = ploc
        elif dir == 1:
            loc = (ploc[0]+1, ploc[1])
        elif dir == 2:
            loc = (ploc[0]+1, ploc[1]+1)
        elif dir == 3:
            loc = (ploc[0], ploc[1]+1)
        elif dir == 4:
            loc = (ploc[0]-1, ploc[1]+1)
        elif dir == 5:
            loc = (ploc[0]-1, ploc[1])
        elif dir == 6:
            loc = (ploc[0]-1, ploc[1]-1)
        elif dir == 7:
            loc = (ploc[0], ploc[1]-1)
        elif dir == 8:
            loc = (ploc[0]+1, ploc[1]-1)
        else:
            raise NameError('Direction unknown')
        return loc
            
    
    def init_loc(self, x, step_size):
        device = x.device
        loc_dict = {}
        loc = None
        cached_loc = None
        if x.shape[1] > 1:
            steps = x.shape[1] -1
            for k in range(steps):
                if k % step_size == 0:
                    dir = x[:,k].detach().item() - self.vqvae_vocab_size
                    if dir == 0:
                        loc = (0, 0) # init loc
                    else:
                        loc = self.get_loc(loc, dir) # getloc
                    loc_dict[loc] = torch.empty(1,0).long().to(device)
                    cached_loc = loc
                else:
                    ix = x[:,[k]]
                    loc_dict[cached_loc]  = torch.cat((loc_dict[cached_loc], ix), dim = 1)
        return loc_dict, loc
    
    def sample_memorized(self, x, steps, temp=1.0, top_k=100, seed=None, step_size=17, zeroing=False):
        device = x.device
        loc_dict, loc = self.init_loc(x, step_size)
        is_train = False
        if self.transformer.training == True:
            is_train = True    
        self.transformer.eval()
        block_size = self.block_size
        generator = None
        if seed is not None:
            generator = torch.Generator(device).manual_seed(seed)
        is_visited = False
        cache_counter = 0
        # loc = None
        for k in range(steps):
            # check directionality
            if k % step_size == 0:
                dir = x[:,-1].detach().item() - self.vqvae_vocab_size
                if dir == 0:
                    is_visited = False
                    loc = (0, 0) # init loc
                    loc_dict[loc] = torch.empty(1,0).long().to(device)
                else:
                    loc = self.get_loc(loc, dir) # getloc
                    if loc in loc_dict:
                        is_visited = True
                        cache_counter = 0
                    else:
                        is_visited = False
                        loc_dict[loc] = torch.empty(1,0).long().to(device)


            if x.size(1) < block_size:
                x_cond = x
            else:
                remain = step_size - (x.size(1) % step_size)
                x_cond = x[:, -(block_size-remain):]  # crop context if needed
                if zeroing:
                    x_cond = x_cond.clone()
                    x_cond[:, 0] = self.vqvae_vocab_size

            if is_visited == False:
                logits = self.transformer(x_cond)
                logits = logits[:, -1, :] / temp

                if top_k is not None:
                    logits = self.top_k_logits(logits, top_k)

                probs = F.softmax(logits, dim = -1)
                ix = torch.multinomial(probs, num_samples=1, generator=generator)
                # print('this shouldnt')
                loc_dict[loc] = torch.cat((loc_dict[loc], ix), dim = 1)
            else:
                if cache_counter == 15: #reaching end of latent code
                    is_visited = False 
                ix = loc_dict[loc][:,[cache_counter]]
                # print(ix)
                cache_counter += 1

            x = torch.cat((x, ix), dim=1)


        if is_train == True:
            self.transformer.train()

        return x