gist_demo / utils /isoutil.py
Mikhael Johanes
clean up
0526506
raw
history blame
7.75 kB
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
def pol2car(rho, pi, xi, yi):
x = rho * np.cos(pi) + xi
y = rho * np.sin(pi) + yi
return (x, y)
def plot_isovist(isovists, show_axis=False, s=0.1, figsize=(5,5)):
#transpose the matrix
# isovists = np.transpose(isovists, (isovists.ndim-1, isovists.ndim-2))
plt.switch_backend('agg')
fig = plt.figure(figsize=figsize)
points = []
res = np.pi/90
isovist = isovists
for j, rho in enumerate(isovist):
if rho < 1.0:
pt = pol2car(rho, j*res, 0, 0)
points.append(pt)
x = [i[0] for i in points]
y = [i[1] for i in points]
ax = fig.add_subplot(111)
ax.set_aspect('equal')
ax.set_xlim(-1,1)
ax.set_ylim(-1,1)
if not show_axis:
ax.axis('off')
ax.scatter(x, y, s, 'black')
return fig
def isovist_to_cartesian_a(isovist, x, y, scale):
points = []
xy = (x, y)
res = np.pi/len(isovist)*2
isovist = isovist * scale
for j, rho in enumerate(isovist):
pt = pol2car(rho, j*res, xy[0], xy[1])
points.append(pt)
points = np.stack(points)
return(points)
def isovist_to_cartesian_segment_a(isovist, x, y, scale, max=0.98, min = 0.1, d=0.1):
points = []
segment = []
xy = (x, y)
res = np.pi/len(isovist)*2
isovist = isovist * scale
p_rho = isovist[-1]
for j, rho in enumerate(isovist):
delta = abs(p_rho-rho)
if j == 0:
first_rho = rho
if rho < max * scale and rho > min * scale and delta < d * scale:
pt = pol2car(rho, j*res, xy[0], xy[1])
segment.append(pt)
else:
points.append(segment)
segment = []
p_rho = rho
if first_rho < max * scale and first_rho > min * scale and abs(rho-first_rho)< d * scale :
if len(points) > 0:
segment.extend(points[0])
points[0]=segment
else:
points.append(segment)
else:
points.append(segment)
segments = []
for i in range(len(points)):
if len(points[i])>0:
segment = np.stack(points[i])
segments.append(segment)
return(segments)
def index_to_loc_grid(idx, d):
if idx == 0:
return np.array((0., 0.), dtype=np.float32)
elif idx == 1:
return np.array((d, 0.), dtype=np.float32)
elif idx == 2:
return np.array((d, d), dtype=np.float32)
elif idx == 3:
return np.array((0., d), dtype=np.float32)
elif idx == 4:
return np.array((-d, d), dtype=np.float32)
elif idx == 5:
return np.array((-d, 0.), dtype=np.float32)
elif idx == 6:
return np.array((-d, -d), dtype=np.float32)
elif idx == 7:
return np.array((0., -d), dtype=np.float32)
elif idx == 8:
return np.array((d, -d), dtype=np.float32)
else:
raise NameError('Direction unknown')
# showing isovist sequence grid
def seq_show_grid(locs, isovists, d=0.2, figsize=(8, 8), center=False, lim=1.5, alpha=0.02, rad=0.9, b_width=1.0, calculate_lim=False):
# walk trough the sequence
p_loc = np.array((0, 0))
b_segments = []
b_points = []
isovists_pts = []
res = np.pi/128
cartesian_locs = []
for loc, isovist in zip(locs, isovists):
rel_pos = index_to_loc_grid(loc, d) + p_loc
for j, rho in enumerate(isovist):
if rho < rad :
pt = pol2car(rho, j*res, rel_pos[0], rel_pos[1])
b_points.append(pt)
segments = isovist_to_cartesian_segment_a(isovist, rel_pos[0], rel_pos[1], 1.0)
b_segments.extend(segments)
isovists_pts.append(isovist_to_cartesian_a(isovist, rel_pos[0], rel_pos[1], 1.0))
cartesian_locs.append(rel_pos)
p_loc = rel_pos
if len(b_points) > 0:
b_points = np.stack(b_points)
else:
b_points =[]
isovists_pts = np.stack(isovists_pts)
# b_segments = np.stack(b_segments)
cartesian_locs = np.stack(cartesian_locs)
# set graphic properties
isovist_path_width = 0.1
isovist_path_pt1 = 6.0
isovist_path_pt2 = 10.0
isovist_boundary_pt = 0.05
if center == True:
bbox = get_bbox(b_points)
center_pt = get_center_pts(bbox, np_array=True)
b_points = [ pt - center_pt for pt in b_points]
isovists_pts = [ pt - center_pt for pt in isovists_pts]
b_segments = [ pt - center_pt for pt in b_segments]
cartesian_locs = [ pt - center_pt for pt in cartesian_locs]
# resize image
if calculate_lim == True:
if bbox is not None:
max = np.max(np.abs(bbox))
else:
max = 2.0
if max > 2.0:
lim = ((max // 0.5) + 1) * 0.5
isovist_path_width *= 2.0/lim
isovist_path_pt1 *= 2.0/lim
isovist_path_pt2 *= 2.0/lim
isovist_boundary_pt *= 2.0/lim
fig, ax = plt.subplots(1,1, figsize=figsize, dpi=96)
# isovists
isovist_poly = []
for isovist_pts in isovists_pts:
isovist_poly.append(Polygon(isovist_pts, True))
r = PatchCollection(isovist_poly)
r.set_facecolor('#00aabb')
r.set_edgecolor(None)
r.set_alpha(alpha)
ax.add_collection(r)
# isovist path
q = PatchCollection([Polygon(cartesian_locs, False)])
q.set_facecolor('none')
q.set_edgecolor('red')
q.set_linewidth(isovist_path_width)
# q.set_linestyle('dashed')
ax.add_collection(q)
# start_pt
ax.scatter([x[0] for x in cartesian_locs[:1]], [x[1] for x in cartesian_locs[:1]], s = isovist_path_pt1, c='k', marker='s')
# sequence
ax.scatter([x[0] for x in cartesian_locs[1:-1]], [x[1] for x in cartesian_locs[1:-1]], s = isovist_path_pt1, c='red')
# end pt
ax.scatter([x[0] for x in cartesian_locs[-1:]], [x[1] for x in cartesian_locs[-1:]], s = isovist_path_pt2, c='k', marker='x')
# boundaries
edge_patches = []
for segment in b_segments:
if len(segment) > 5:
polygon = Polygon(segment, False)
edge_patches.append(polygon)
p = PatchCollection(edge_patches)
p.set_facecolor('none')
p.set_edgecolor('#000000')
p.set_linewidth(b_width)
ax.scatter([x[0] for x in b_points], [x[1] for x in b_points], s = isovist_boundary_pt, c='#000000',)
# ax.add_collection(p)
# style
ax.set_aspect('equal')
lim = lim
ax.set_xlim(-lim,lim)
ax.set_ylim(-lim,lim)
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
return fig
# plotting isovist sequence grid
def plot_isovist_sequence_grid(locs, isovists, figsize=(8,8), center=False, lim=1.5, alpha=0.02, rad=0.9, b_width=1.0, calculate_lim=False):
fig = seq_show_grid(locs, isovists, figsize=figsize, center=center, lim=lim, alpha=alpha, rad=rad, b_width=b_width, calculate_lim=calculate_lim)
# for plot with torchvision util
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
w, h = fig.canvas.get_width_height()
im = data.reshape((int(h), int(w), -1))
im = im.transpose((2, 0, 1))
plt.close()
return im
def get_bbox(pts):
if len(pts) > 0:
if type(pts) is list:
pts = np.stack(pts)
bbox = np.min(pts[:, 0]), np.max(pts[:, 0]), np.min(pts[:, 1]), np.max(pts[:, 1])
return bbox
else:
return None
def get_center_pts(bbox, np_array = False):
if bbox is not None:
center = 0.5*(bbox[0] + bbox[1]), 0.5*(bbox[2] + bbox[3])
if np_array:
center = np.asarray(center)
else:
center = np.asarray([0,0])
return center