Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load your trained model and processor
|
7 |
+
model_name = "mjpsm/confidence-image-classifier"
|
8 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
9 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Label mapping
|
12 |
+
id2label = {
|
13 |
+
0: "Confident",
|
14 |
+
1: "No Confidence",
|
15 |
+
2: "Somewhat Confident"
|
16 |
+
}
|
17 |
+
|
18 |
+
# Streamlit app title
|
19 |
+
st.title("Confidence Detector 📸")
|
20 |
+
|
21 |
+
st.write("Take a picture or upload one, and the AI will predict your confidence level!")
|
22 |
+
|
23 |
+
# Upload or capture an image
|
24 |
+
uploaded_file = st.camera_input("Take a picture") # Opens your webcam
|
25 |
+
# You could also use st.file_uploader("Upload a picture", type=["jpg", "jpeg", "png"])
|
26 |
+
|
27 |
+
if uploaded_file is not None:
|
28 |
+
# Load the image
|
29 |
+
image = Image.open(uploaded_file)
|
30 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
31 |
+
|
32 |
+
# Preprocess
|
33 |
+
inputs = processor(images=image, return_tensors="pt")
|
34 |
+
|
35 |
+
# Predict
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = model(**inputs)
|
38 |
+
|
39 |
+
logits = outputs.logits
|
40 |
+
predicted_class_idx = logits.argmax(-1).item()
|
41 |
+
|
42 |
+
# Map prediction
|
43 |
+
predicted_label = id2label[predicted_class_idx]
|
44 |
+
|
45 |
+
# Show result
|
46 |
+
st.markdown(f"## Prediction: **{predicted_label}** 🎯")
|