Spaces:
Build error
Build error
Enhance AgentRunner and graph functionality by introducing memory management and improved state handling. Update __call__ method to support both question input and resuming from interrupts, while adding new memory-related fields to track context, actions, and success/error counts. Refactor step callback logic for better user interaction and state management.
Browse files- agent.py +42 -20
- graph.py +62 -18
- test_agent.py +1 -0
agent.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import logging
|
2 |
import os
|
3 |
import uuid
|
|
|
4 |
|
5 |
from graph import agent_graph
|
6 |
|
@@ -27,34 +28,55 @@ class AgentRunner:
|
|
27 |
logger.info("Initializing AgentRunner")
|
28 |
self.graph = agent_graph
|
29 |
self.last_state = None # Store the last state for testing/debugging
|
|
|
30 |
|
31 |
-
def __call__(self,
|
32 |
"""Process a question through the agent graph and return the answer.
|
33 |
|
34 |
Args:
|
35 |
-
|
36 |
|
37 |
Returns:
|
38 |
str: The agent's response
|
39 |
"""
|
40 |
try:
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
"
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
except Exception as e:
|
59 |
-
logger.error(f"Error processing
|
60 |
raise
|
|
|
1 |
import logging
|
2 |
import os
|
3 |
import uuid
|
4 |
+
from langgraph.types import Command
|
5 |
|
6 |
from graph import agent_graph
|
7 |
|
|
|
28 |
logger.info("Initializing AgentRunner")
|
29 |
self.graph = agent_graph
|
30 |
self.last_state = None # Store the last state for testing/debugging
|
31 |
+
self.thread_id = str(uuid.uuid4()) # Generate a unique thread_id for this runner
|
32 |
|
33 |
+
def __call__(self, input_data) -> str:
|
34 |
"""Process a question through the agent graph and return the answer.
|
35 |
|
36 |
Args:
|
37 |
+
input_data: Either a question string or a Command object for resuming
|
38 |
|
39 |
Returns:
|
40 |
str: The agent's response
|
41 |
"""
|
42 |
try:
|
43 |
+
config = {"configurable": {"thread_id": self.thread_id}}
|
44 |
+
|
45 |
+
if isinstance(input_data, str):
|
46 |
+
# Initial question
|
47 |
+
logger.info(f"Processing question: {input_data}")
|
48 |
+
initial_state = {
|
49 |
+
"question": input_data,
|
50 |
+
"messages": [],
|
51 |
+
"answer": None,
|
52 |
+
"step_logs": [],
|
53 |
+
"is_complete": False,
|
54 |
+
"step_count": 0,
|
55 |
+
# Initialize new memory fields
|
56 |
+
"context": {},
|
57 |
+
"memory_buffer": [],
|
58 |
+
"last_action": None,
|
59 |
+
"action_history": [],
|
60 |
+
"error_count": 0,
|
61 |
+
"success_count": 0,
|
62 |
+
}
|
63 |
+
|
64 |
+
# Use stream to get interrupt information
|
65 |
+
for chunk in self.graph.stream(initial_state, config):
|
66 |
+
if isinstance(chunk, tuple) and len(chunk) > 0 and hasattr(chunk[0], '__interrupt__'):
|
67 |
+
# If we hit an interrupt, resume with 'c'
|
68 |
+
for result in self.graph.stream(Command(resume="c"), config):
|
69 |
+
self.last_state = result
|
70 |
+
return result.get("answer", "No answer generated")
|
71 |
+
self.last_state = chunk
|
72 |
+
return chunk.get("answer", "No answer generated")
|
73 |
+
else:
|
74 |
+
# Resuming from interrupt
|
75 |
+
logger.info("Resuming from interrupt")
|
76 |
+
for result in self.graph.stream(input_data, config):
|
77 |
+
self.last_state = result
|
78 |
+
return result.get("answer", "No answer generated")
|
79 |
+
|
80 |
except Exception as e:
|
81 |
+
logger.error(f"Error processing input: {str(e)}")
|
82 |
raise
|
graph.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
|
3 |
import logging
|
4 |
import os
|
|
|
5 |
from typing import Dict, List, Optional, TypedDict, Union
|
6 |
|
7 |
import yaml
|
@@ -66,6 +67,13 @@ class AgentState(TypedDict):
|
|
66 |
step_logs: List[Dict]
|
67 |
is_complete: bool
|
68 |
step_count: int
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
class AgentNode:
|
@@ -92,18 +100,43 @@ class AgentNode:
|
|
92 |
# Log execution start
|
93 |
logger.info("Starting agent execution")
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
107 |
|
108 |
# Log updated state
|
109 |
logger.info("Updated state after processing:")
|
@@ -134,10 +167,11 @@ class StepCallbackNode:
|
|
134 |
state["step_logs"].append(step_log)
|
135 |
|
136 |
try:
|
137 |
-
# Use interrupt for user input
|
138 |
-
|
139 |
"Press 'c' to continue, 'q' to quit, or 'i' for more info: "
|
140 |
)
|
|
|
141 |
|
142 |
if user_input.lower() == "q":
|
143 |
state["is_complete"] = True
|
@@ -146,12 +180,12 @@ class StepCallbackNode:
|
|
146 |
logger.info(f"Current step: {state['step_count']}")
|
147 |
logger.info(f"Question: {state['question']}")
|
148 |
logger.info(f"Current answer: {state['answer']}")
|
149 |
-
return
|
150 |
elif user_input.lower() == "c":
|
151 |
return state
|
152 |
else:
|
153 |
logger.warning("Invalid input. Please use 'c', 'q', or 'i'.")
|
154 |
-
return
|
155 |
|
156 |
except Exception as e:
|
157 |
logger.warning(f"Error during interrupt: {str(e)}")
|
@@ -169,10 +203,20 @@ def build_agent_graph(agent: AgentNode) -> StateGraph:
|
|
169 |
|
170 |
# Add edges
|
171 |
workflow.add_edge("agent", "callback")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
workflow.add_conditional_edges(
|
173 |
-
"callback",
|
174 |
-
lambda x: END if x["is_complete"] else "agent",
|
175 |
-
{True: END, False: "agent"},
|
176 |
)
|
177 |
|
178 |
# Set entry point
|
|
|
2 |
|
3 |
import logging
|
4 |
import os
|
5 |
+
from datetime import datetime
|
6 |
from typing import Dict, List, Optional, TypedDict, Union
|
7 |
|
8 |
import yaml
|
|
|
67 |
step_logs: List[Dict]
|
68 |
is_complete: bool
|
69 |
step_count: int
|
70 |
+
# Add memory-related fields
|
71 |
+
context: Dict[str, any] # For storing contextual information
|
72 |
+
memory_buffer: List[Dict] # For storing important information across steps
|
73 |
+
last_action: Optional[str] # Track the last action taken
|
74 |
+
action_history: List[Dict] # History of actions taken
|
75 |
+
error_count: int # Track error frequency
|
76 |
+
success_count: int # Track successful operations
|
77 |
|
78 |
|
79 |
class AgentNode:
|
|
|
100 |
# Log execution start
|
101 |
logger.info("Starting agent execution")
|
102 |
|
103 |
+
try:
|
104 |
+
# Run the agent
|
105 |
+
result = self.agent.run(state["question"])
|
106 |
+
|
107 |
+
# Update memory-related fields
|
108 |
+
new_state = state.copy()
|
109 |
+
new_state["messages"].append(AIMessage(content=result))
|
110 |
+
new_state["answer"] = result
|
111 |
+
new_state["step_count"] += 1
|
112 |
+
new_state["last_action"] = "agent_response"
|
113 |
+
new_state["action_history"].append(
|
114 |
+
{
|
115 |
+
"step": state["step_count"],
|
116 |
+
"action": "agent_response",
|
117 |
+
"result": result,
|
118 |
+
}
|
119 |
+
)
|
120 |
+
new_state["success_count"] += 1
|
121 |
+
|
122 |
+
# Store important information in memory buffer
|
123 |
+
if result:
|
124 |
+
new_state["memory_buffer"].append(
|
125 |
+
{
|
126 |
+
"step": state["step_count"],
|
127 |
+
"content": result,
|
128 |
+
"timestamp": datetime.now().isoformat(),
|
129 |
+
}
|
130 |
+
)
|
131 |
|
132 |
+
except Exception as e:
|
133 |
+
logger.error(f"Error during agent execution: {str(e)}")
|
134 |
+
new_state = state.copy()
|
135 |
+
new_state["error_count"] += 1
|
136 |
+
new_state["action_history"].append(
|
137 |
+
{"step": state["step_count"], "action": "error", "error": str(e)}
|
138 |
+
)
|
139 |
+
raise
|
140 |
|
141 |
# Log updated state
|
142 |
logger.info("Updated state after processing:")
|
|
|
167 |
state["step_logs"].append(step_log)
|
168 |
|
169 |
try:
|
170 |
+
# Use interrupt for user input and unpack the tuple
|
171 |
+
interrupt_result = interrupt(
|
172 |
"Press 'c' to continue, 'q' to quit, or 'i' for more info: "
|
173 |
)
|
174 |
+
user_input = interrupt_result[0] # Get the actual user input
|
175 |
|
176 |
if user_input.lower() == "q":
|
177 |
state["is_complete"] = True
|
|
|
180 |
logger.info(f"Current step: {state['step_count']}")
|
181 |
logger.info(f"Question: {state['question']}")
|
182 |
logger.info(f"Current answer: {state['answer']}")
|
183 |
+
return state
|
184 |
elif user_input.lower() == "c":
|
185 |
return state
|
186 |
else:
|
187 |
logger.warning("Invalid input. Please use 'c', 'q', or 'i'.")
|
188 |
+
return state
|
189 |
|
190 |
except Exception as e:
|
191 |
logger.warning(f"Error during interrupt: {str(e)}")
|
|
|
203 |
|
204 |
# Add edges
|
205 |
workflow.add_edge("agent", "callback")
|
206 |
+
|
207 |
+
# Add conditional edges for callback
|
208 |
+
def should_continue(state: AgentState) -> str:
|
209 |
+
"""Determine the next node based on state."""
|
210 |
+
if state["is_complete"]:
|
211 |
+
return END
|
212 |
+
# If we have an answer and no errors, we're done
|
213 |
+
if state["answer"] and state["error_count"] == 0:
|
214 |
+
return END
|
215 |
+
# Otherwise continue to agent
|
216 |
+
return "agent"
|
217 |
+
|
218 |
workflow.add_conditional_edges(
|
219 |
+
"callback", should_continue, {END: END, "agent": "agent"}
|
|
|
|
|
220 |
)
|
221 |
|
222 |
# Set entry point
|
test_agent.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import logging
|
2 |
|
3 |
import pytest
|
|
|
4 |
|
5 |
from agent import AgentRunner
|
6 |
|
|
|
1 |
import logging
|
2 |
|
3 |
import pytest
|
4 |
+
from langgraph.types import Command
|
5 |
|
6 |
from agent import AgentRunner
|
7 |
|