Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
-
import
|
4 |
-
from ultralytics import YOLO
|
5 |
|
6 |
-
model
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Function to perform object detection
|
9 |
def detect_objects(image):
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
# Create a list of dictionaries for each detected object
|
18 |
detections = []
|
19 |
-
for bbox,
|
20 |
-
x1, y1, x2, y2
|
|
|
21 |
detections.append({
|
22 |
'label': label,
|
23 |
-
'confidence': float(
|
24 |
'x1': float(x1),
|
25 |
'y1': float(y1),
|
26 |
'x2': float(x2),
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
+
import onnxruntime
|
|
|
4 |
|
5 |
+
# Download the ONNX model from Hugging Face
|
6 |
+
model_path = hf_hub_download(repo_id="mkhug98/EchoYolo", filename="best.onnx")
|
7 |
+
|
8 |
+
# Load the ONNX model
|
9 |
+
session = onnxruntime.InferenceSession(model_path)
|
10 |
|
11 |
# Function to perform object detection
|
12 |
def detect_objects(image):
|
13 |
+
# Preprocess the image
|
14 |
+
image = image.resize((640, 640)) # Resize the image to the expected input size
|
15 |
+
input_data = image.transpose(2, 0, 1).numpy() # Rearrange the dimensions for ONNX
|
16 |
+
|
17 |
+
# Perform inference with the ONNX model
|
18 |
+
outputs = session.run(None, {"images": input_data.astype("float32")})
|
19 |
+
bboxes, scores, class_ids = outputs
|
20 |
|
21 |
# Create a list of dictionaries for each detected object
|
22 |
detections = []
|
23 |
+
for bbox, score, class_id in zip(bboxes[0], scores[0], class_ids[0]):
|
24 |
+
x1, y1, x2, y2 = bbox
|
25 |
+
label = session.get_modelmeta().custom_metadata_map["names"][int(class_id)]
|
26 |
detections.append({
|
27 |
'label': label,
|
28 |
+
'confidence': float(score),
|
29 |
'x1': float(x1),
|
30 |
'y1': float(y1),
|
31 |
'x2': float(x2),
|