mknolan commited on
Commit
265a655
·
verified ·
1 Parent(s): 567a80d

Upload Dockerfile with huggingface_hub

Browse files
Files changed (1) hide show
  1. Dockerfile +76 -0
Dockerfile ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime
2
+
3
+ # Set environment variables
4
+ ENV DEBIAN_FRONTEND=noninteractive
5
+ ENV PYTHONUNBUFFERED=1
6
+ ENV HF_HOME=/app/.cache/huggingface
7
+ ENV TRANSFORMERS_CACHE=/app/.cache/huggingface/transformers
8
+ ENV PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128
9
+
10
+ # Create necessary directories with proper permissions
11
+ RUN mkdir -p /app/.cache/huggingface/transformers && \
12
+ chmod -R 777 /app
13
+
14
+ # Install system dependencies
15
+ RUN apt-get update && apt-get install -y --no-install-recommends \
16
+ build-essential \
17
+ git \
18
+ curl \
19
+ ca-certificates \
20
+ python3-pip \
21
+ python3-dev \
22
+ && rm -rf /var/lib/apt/lists/*
23
+
24
+ # Create a working directory
25
+ WORKDIR /app
26
+
27
+ # Install core requirements
28
+ COPY requirements.txt .
29
+ RUN pip3 install --no-cache-dir --upgrade pip && \
30
+ pip3 install --no-cache-dir -r requirements.txt
31
+
32
+ # Install basic dependencies specifically for InternViT
33
+ RUN pip3 install --no-cache-dir \
34
+ transformers==4.37.2 \
35
+ timm==0.9.11 \
36
+ accelerate==0.30.0 \
37
+ safetensors==0.4.1 \
38
+ einops
39
+
40
+ # Create a modified test script that can work without flash-attn
41
+ RUN echo 'import torch\nimport os\nimport sys\nimport traceback\nimport gradio as gr\nfrom PIL import Image\nfrom transformers import AutoModel, CLIPImageProcessor\n\nprint("=" * 50)\nprint("INTERNVIT-6B MODEL LOADING TEST (NO FLASH-ATTN)")\nprint("=" * 50)\n\n# System information\nprint(f"Python version: {sys.version}")\nprint(f"PyTorch version: {torch.__version__}")\nprint(f"CUDA available: {torch.cuda.is_available()}")\n\nif torch.cuda.is_available():\n print(f"CUDA version: {torch.version.cuda}")\n print(f"GPU count: {torch.cuda.device_count()}")\n for i in range(torch.cuda.device_count()):\n print(f"GPU {i}: {torch.cuda.get_device_name(i)}")\n \n # Memory info\n print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")\n print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB")\n print(f"Reserved GPU memory: {torch.cuda.memory_reserved() / 1e9:.2f} GB")\nelse:\n print("CUDA is not available. This is a critical issue for model loading.")\n\n# Create a function to load and test the model\ndef load_and_test_model():\n try:\n # Monkey patch to disable flash attention\n import sys\n import types\n \n # Create a fake flash_attn module\n flash_attn_module = types.ModuleType("flash_attn")\n flash_attn_module.__version__ = "0.0.0-disabled"\n sys.modules["flash_attn"] = flash_attn_module\n \n print("\\nNOTE: Created dummy flash_attn module to avoid dependency error")\n print("This is just for testing basic model loading - some functionality may be disabled")\n \n print("\\nLoading model with bfloat16 precision and low_cpu_mem_usage=True...")\n model = AutoModel.from_pretrained(\n "OpenGVLab/InternViT-6B-224px",\n torch_dtype=torch.bfloat16,\n low_cpu_mem_usage=True,\n trust_remote_code=True)\n \n if torch.cuda.is_available():\n print("Moving model to CUDA...")\n model = model.cuda()\n \n model.eval()\n print("✓ Model loaded successfully!")\n \n # Now try to process a test image\n print("\\nLoading image processor...")\n image_processor = CLIPImageProcessor.from_pretrained("OpenGVLab/InternViT-6B-224px")\n print("✓ Image processor loaded successfully!")\n \n # Create a simple test image\n print("\\nCreating test image...")\n test_image = Image.new("RGB", (224, 224), color="red")\n \n # Process the test image\n print("Processing test image...")\n pixel_values = image_processor(images=test_image, return_tensors="pt").pixel_values\n if torch.cuda.is_available():\n pixel_values = pixel_values.to(torch.bfloat16).cuda()\n \n # Get model parameters\n params = sum(p.numel() for p in model.parameters())\n print(f"Model parameters: {params:,}")\n \n # Forward pass\n print("Running forward pass...")\n with torch.no_grad():\n outputs = model(pixel_values)\n \n print("✓ Forward pass successful!")\n print(f"Output shape: {outputs.last_hidden_state.shape}")\n \n return f"SUCCESS: Model loaded and test passed!\\nParameters: {params:,}\\nOutput shape: {outputs.last_hidden_state.shape}"\n \n except Exception as e:\n print(f"\\n❌ ERROR: {str(e)}")\n traceback.print_exc()\n return f"FAILED: Error loading model or processing image\\nError: {str(e)}"\n\n# Create a simple Gradio interface\ndef create_interface():\n with gr.Blocks(title="InternViT-6B Test") as demo:\n gr.Markdown("# InternViT-6B Model Loading Test (without Flash Attention)")\n gr.Markdown("### This version uses a dummy flash-attn implementation to avoid compilation issues")\n \n with gr.Row():\n test_btn = gr.Button("Test Model Loading")\n output = gr.Textbox(label="Test Results", lines=10)\n \n test_btn.click(fn=load_and_test_model, inputs=[], outputs=output)\n \n return demo\n\n# Main function\nif __name__ == "__main__":\n # Print environment variables\n print("\\nEnvironment variables:")\n relevant_vars = ["CUDA_VISIBLE_DEVICES", "NVIDIA_VISIBLE_DEVICES", \n "TRANSFORMERS_CACHE", "HF_HOME", "PYTORCH_CUDA_ALLOC_CONF"]\n for var in relevant_vars:\n print(f"{var}: {os.environ.get(var, "Not set")}")\n \n # Set environment variable for better GPU memory management\n os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"\n \n # Create and launch the interface\n demo = create_interface()\n demo.launch(share=False, server_name="0.0.0.0")' > /app/no_flash_attn_test.py
42
+
43
+ # Add a simple script to check GPU status
44
+ RUN echo '#!/bin/bash \n\
45
+ echo "Starting diagnostics..." \n\
46
+ echo "===== System Information =====" \n\
47
+ python3 -c "import sys; print(f\"Python version: {sys.version}\")" \n\
48
+ python3 -c "import torch; print(f\"PyTorch version: {torch.__version__}\")" \n\
49
+ echo "\n===== CUDA Information =====" \n\
50
+ python3 -c "import torch; print(f\"CUDA available: {torch.cuda.is_available()}\")" \n\
51
+ if [ $(python3 -c "import torch; print(torch.cuda.is_available())") = "True" ]; then \n\
52
+ python3 -c "import torch; print(f\"CUDA version: {torch.version.cuda}\")" \n\
53
+ python3 -c "import torch; print(f\"GPU count: {torch.cuda.device_count()}\")" \n\
54
+ python3 -c "import torch; for i in range(torch.cuda.device_count()): print(f\"GPU {i}: {torch.cuda.get_device_name(i)}\")" \n\
55
+ python3 -c "import torch; print(f\"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024 / 1024 / 1024:.2f} GB\")" \n\
56
+ fi \n\
57
+ echo "\n===== Package Information =====" \n\
58
+ pip3 list | grep -E "transformers|einops|torch|timm|accelerate|safetensors" \n\
59
+ echo "\n===== NVIDIA System Information =====" \n\
60
+ if command -v nvidia-smi &> /dev/null; then \n\
61
+ nvidia-smi \n\
62
+ else \n\
63
+ echo "nvidia-smi not found" \n\
64
+ fi \n\
65
+ echo "\n===== Starting Application =====" \n\
66
+ exec "$@"' > /entrypoint.sh && \
67
+ chmod +x /entrypoint.sh
68
+
69
+ # Expose port 7860 for Gradio
70
+ EXPOSE 7860
71
+
72
+ # Use our entrypoint script
73
+ ENTRYPOINT ["/entrypoint.sh"]
74
+
75
+ # Start the modified application that doesn't require flash-attn
76
+ CMD ["python3", "no_flash_attn_test.py"]