File size: 9,664 Bytes
a19e3e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1edae1c
 
83214bf
1edae1c
a19e3e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
# imports
import os

import torch
from pytorch_lightning import LightningModule, Trainer
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader, random_split
from torchmetrics import Accuracy
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torch_lr_finder import LRFinder
import math

import torch
from torch.utils.data import DataLoader, random_split
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import pytorch_lightning as pl
import matplotlib.pyplot as plt


PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
BATCH_SIZE = 256

# Model
class custom_ResNet(pl.LightningModule):
    def __init__(self, data_dir=PATH_DATASETS, learning_rate=2e-4):
        super(custom_ResNet, self).__init__()

      # Set our init args as class attributes
      # Hardcode some dataset specific attributes
        self.data_dir = data_dir
        self.learning_rate = learning_rate
        self.classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
        self.num_classes = 10
        self.train_transform = transforms.Compose([
            transforms.RandomCrop(32, padding=4),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),  # Convert PIL image to tensor
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
        ])

        self.test_transform = transforms.Compose([
            transforms.ToTensor(),  # Convert PIL image to tensor
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
        ])

        # Define PyTorch model
        # PREPARATION BLOCK
        self.prepblock = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False),
            nn.ReLU(),nn.BatchNorm2d(64))
            # output_size = 32, RF=3


        # CONVOLUTION BLOCK 1
        self.convblock1_l1 = nn.Sequential(
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False),
            # output_size = 32, RF=5
            nn.MaxPool2d(2, 2),nn.ReLU(),nn.BatchNorm2d(128))
            # output_size = 16, RF=6

        self.convblock1_r1 = nn.Sequential(
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False),
            nn.ReLU(),nn.BatchNorm2d(128),
            # output_size = 16, RF=10
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False),
            nn.ReLU(),nn.BatchNorm2d(128))
            # output_size = 16, RF=14


        # CONVOLUTION BLOCK 2
        self.convblock2_l1 = nn.Sequential(
            nn.Conv2d(in_channels=128, out_channels=256, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False),
            # output_size = 16, RF=18
            nn.MaxPool2d(2, 2),nn.ReLU(),nn.BatchNorm2d(256))
            # output_size = 8, RF=20


        # CONVOLUTION BLOCK 3
        self.convblock3_l1 = nn.Sequential(
            nn.Conv2d(in_channels=256, out_channels=512, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False),
            # output_size = 8, RF=28
            nn.MaxPool2d(2, 2),
            nn.ReLU(),nn.BatchNorm2d(512))
            # output_size = 4, RF=32


        self.convblock3_r2 = nn.Sequential(
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False),
            nn.ReLU(),nn.BatchNorm2d(512),
             # output_size = 4, RF=48
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=(3, 3), padding=1, dilation=1, stride=1, bias=False),
            nn.ReLU(),nn.BatchNorm2d(512))
            # output_size = 4, RF=64


        # CONVOLUTION BLOCK 4
        self.convblock4_mp = nn.Sequential(nn.MaxPool2d(4))
        # output_size = 1, RF = 88


        # OUTPUT BLOCK - Fully Connected layer
        self.output_block = nn.Sequential(nn.Linear(in_features=512, out_features=10, bias=False))
        # output_size = 1, RF = 88


    def forward(self, x):

        # Preparation Block
        x1 = self.prepblock(x)

        # Convolution Block 1
        x2 = self.convblock1_l1(x1)
        x3 = self.convblock1_r1(x2)
        x4 = x2 + x3

        # Convolution Block 2
        x5 = self.convblock2_l1(x4)

        # Convolution Block 3
        x6 = self.convblock3_l1(x5)
        x7 = self.convblock3_r2(x6)
        x8 = x7 + x6

        # Convolution Block 4
        x9 = self.convblock4_mp(x8)

        # Output Block
        x9 = x9.view(x9.size(0), -1)
        x10 = self.output_block(x9)
        return F.log_softmax(x10, dim=1)

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.forward(x)
        loss = F.cross_entropy(y_hat, y)
        pred = y_hat.argmax(dim=1, keepdim=True)
        acc = pred.eq(y.view_as(pred)).float().mean()
        self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True)
        self.log('train_acc', acc, on_step=True, on_epoch=True, prog_bar=True)
        return loss

    def validation_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.forward(x)
        loss = F.cross_entropy(y_hat, y)
        pred = y_hat.argmax(dim=1, keepdim=True)
        acc = pred.eq(y.view_as(pred)).float().mean()
        self.log('val_loss', loss, prog_bar=True)
        self.log('val_acc', acc, prog_bar=True)
        return loss

    def test_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.forward(x)
        loss = F.cross_entropy(y_hat, y)
        pred = y_hat.argmax(dim=1, keepdim=True)
        acc = pred.eq(y.view_as(pred)).float().mean()
        self.log('test_loss', loss, prog_bar=True)
        self.log('test_acc', acc, prog_bar=True)
        return pred  # Return predictions instead of loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=0.001)
        return optimizer


    ####################
    # DATA RELATED HOOKS
    ####################

    def prepare_data(self):
        # download
        CIFAR10(self.data_dir, train=True, download=True)
        CIFAR10(self.data_dir, train=False, download=True)

    def setup(self, stage=None):

        # Assign train/val datasets for use in dataloaders
        if stage == "fit" or stage is None:
            cifar_full = CIFAR10(self.data_dir, train=True, transform=self.train_transform)
            self.cifar_train, self.cifar_val = random_split(cifar_full, [45000, 5000])

        # Assign test dataset for use in dataloader(s)
        if stage == "test" or stage is None:
            self.cifar_test = CIFAR10(self.data_dir, train=False, transform=self.test_transform)

    def train_dataloader(self):
        return DataLoader(self.cifar_train, batch_size=BATCH_SIZE, num_workers=os.cpu_count())

    def val_dataloader(self):
        return DataLoader(self.cifar_val, batch_size=BATCH_SIZE, num_workers=os.cpu_count())

    def test_dataloader(self):
        return DataLoader(self.cifar_test, batch_size=BATCH_SIZE, num_workers=os.cpu_count())

    def collect_misclassified_images(self, num_images):
        misclassified_images = []
        misclassified_true_labels = []
        misclassified_predicted_labels = []
        num_collected = 0

        for batch in self.test_dataloader():
            x, y = batch
            pred = self.forward(x).argmax(dim=1, keepdim=True)
            misclassified_mask = pred.eq(y.view_as(pred)).squeeze().cpu().numpy()
            misclassified_images.extend(x[~misclassified_mask])
            misclassified_true_labels.extend(y[~misclassified_mask])
            misclassified_predicted_labels.extend(pred[~misclassified_mask])

            num_collected += sum(~misclassified_mask)

            if num_collected >= num_images:
                break

        return misclassified_images[:num_images], misclassified_true_labels[:num_images], misclassified_predicted_labels[:num_images], len(misclassified_images)

    def normalize_image(self, img_tensor):
        min_val = img_tensor.min()
        max_val = img_tensor.max()
        return (img_tensor - min_val) / (max_val - min_val)




    def show_misclassified_images(self, num_images=10):
        misclassified_images, true_labels, predicted_labels, num_misclassified = self.collect_misclassified_images(num_images)

        num_rows = 2
        num_cols = math.ceil(num_images / num_rows)

        fig, axs = plt.subplots(num_rows, num_cols, figsize=(5 * num_cols, 5 * num_rows))
        fig.suptitle(f"Misclassified Images (Showing {num_images} out of {num_misclassified})")
        plt.subplots_adjust(hspace=0.5)  # Adjust vertical space between subplots

        for i in range(num_images):
            img = self.normalize_image(misclassified_images[i]).permute(1, 2, 0)
            row_idx = i // num_cols
            col_idx = i % num_cols
            axs[row_idx, col_idx].imshow(img)
            axs[row_idx, col_idx].set_title(f"True label: {self.classes[true_labels[i]]}\nPredicted: {self.classes[predicted_labels[i]]}")
            axs[row_idx, col_idx].axis("off")

        # Remove any empty subplots in the last row (when num_images is not divisible by num_rows)
        for i in range(num_images, num_rows * num_cols):
            row_idx = i // num_cols
            col_idx = i % num_cols
            axs[row_idx, col_idx].remove()

        plt.show()