mkthoma commited on
Commit
345f891
·
1 Parent(s): b2c29d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -19
app.py CHANGED
@@ -7,6 +7,8 @@ from pytorch_grad_cam import GradCAM
7
  from pytorch_grad_cam.utils.image import show_cam_on_image
8
  from resnet import custom_ResNet
9
  import gradio as gr
 
 
10
 
11
  model = custom_ResNet()
12
  model.load_state_dict(torch.load("custom_resnet_model.pth", map_location=torch.device('cpu')), strict=False)
@@ -19,16 +21,16 @@ inv_normalize = transforms.Normalize(
19
  classes = ('plane', 'car', 'bird', 'cat', 'deer',
20
  'dog', 'frog', 'horse', 'ship', 'truck')
21
 
22
- def inference(input_img, transparency = 0.5, target_layer_number = -1):
 
23
  transform = transforms.ToTensor()
24
  org_img = input_img
25
  input_img = transform(input_img)
26
- input_img = input_img
27
  input_img = input_img.unsqueeze(0)
28
  outputs = model(input_img)
29
- softmax = torch.nn.Softmax(dim=0)
30
- o = softmax(outputs.flatten())
31
- confidences = {classes[i]: float(o[i]) for i in range(10)}
32
  _, prediction = torch.max(outputs, 1)
33
  target_layers = [model.convblock2_l1]
34
  cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
@@ -38,18 +40,67 @@ def inference(input_img, transparency = 0.5, target_layer_number = -1):
38
  img = inv_normalize(img)
39
  rgb_img = np.transpose(img, (1, 2, 0))
40
  rgb_img = rgb_img.numpy()
41
- visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
42
- return confidences, visualization
43
-
44
- title = "CIFAR10 trained on ResNet18 Model with GradCAM"
45
- description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
46
- examples = [["cat.jpg", 0.5, -1], ["dog.jpg", 0.5, -1]]
47
- demo = gr.Interface(
48
- inference,
49
- inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")],
50
- outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
51
- title = title,
52
- description = description,
53
- examples = examples,
54
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  demo.launch()
 
7
  from pytorch_grad_cam.utils.image import show_cam_on_image
8
  from resnet import custom_ResNet
9
  import gradio as gr
10
+ import os
11
+
12
 
13
  model = custom_ResNet()
14
  model.load_state_dict(torch.load("custom_resnet_model.pth", map_location=torch.device('cpu')), strict=False)
 
21
  classes = ('plane', 'car', 'bird', 'cat', 'deer',
22
  'dog', 'frog', 'horse', 'ship', 'truck')
23
 
24
+
25
+ def inference(input_img, transparency=0.5, target_layer_number=-1, top_classes=3):
26
  transform = transforms.ToTensor()
27
  org_img = input_img
28
  input_img = transform(input_img)
 
29
  input_img = input_img.unsqueeze(0)
30
  outputs = model(input_img)
31
+ softmax = torch.nn.Softmax(dim=1) # Use dim=1 to compute softmax along the classes dimension
32
+ o = softmax(outputs)
33
+ confidences = {classes[i]: float(o[0, i]) for i in range(10)}
34
  _, prediction = torch.max(outputs, 1)
35
  target_layers = [model.convblock2_l1]
36
  cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
 
40
  img = inv_normalize(img)
41
  rgb_img = np.transpose(img, (1, 2, 0))
42
  rgb_img = rgb_img.numpy()
43
+ visualization = show_cam_on_image(org_img / 255, grayscale_cam, use_rgb=True, image_weight=transparency)
44
+
45
+ # Sort the confidences dictionary by values in descending order
46
+ sorted_confidences = {k: v for k, v in sorted(confidences.items(), key=lambda item: item[1], reverse=True)}
47
+ # Take the top `top_classes` elements from the sorted_confidences
48
+ top_classes_confidences = {k: sorted_confidences[k] for k in list(sorted_confidences)[:top_classes]}
49
+
50
+ return top_classes_confidences, visualization
51
+
52
+
53
+ # Create a wrapper function for show_misclassified_images()
54
+ def show_misclassified_images_wrapper(num_images=10, use_gradcam=False, gradcam_layer=-1, transparency=0.5):
55
+ transparency = float(transparency)
56
+ num_images = int(num_images)
57
+ if use_gradcam == "Yes":
58
+ use_gradcam = True
59
+ else:
60
+ use_gradcam = False
61
+
62
+ return new_model.show_misclassified_images(num_images, use_gradcam, gradcam_layer, transparency)
63
+
64
+ description1 = "Input any image to test the models prediction"
65
+
66
+
67
+ # Define the full path to the images folder
68
+ images_folder = "examples"
69
+
70
+ # Define the examples list with full paths
71
+ examples = [[os.path.join(images_folder, "plane.jpeg"), 0.5, -1],
72
+ [os.path.join(images_folder, "car.jpg"), 0.5, -1],
73
+ [os.path.join(images_folder, "bird.jpeg"), 0.5, -1],
74
+ [os.path.join(images_folder, "cat.jpeg"), 0.5, -1],
75
+ [os.path.join(images_folder, "deer.jpeg"), 0.5, -1],
76
+ [os.path.join(images_folder, "dog.jpeg"), 0.5, -1],
77
+ [os.path.join(images_folder, "frog.jpeg"), 0.5, -1],
78
+ [os.path.join(images_folder, "horse.jpeg"), 0.5, -1],
79
+ [os.path.join(images_folder, "ship.jpeg"), 0.5, -1],
80
+ [os.path.join(images_folder, "truck.jpeg"), 0.5, -1]]
81
+
82
+
83
+ # Create a separate interface for the "Input an image" tab
84
+ input_interface = gr.Interface(inference,
85
+ inputs=[gr.Image(shape=(32, 32), label="Input Image"),
86
+ gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"),
87
+ gr.Slider(-2, -1, value=-2, step=1, label="Which Layer?"),
88
+ gr.Slider(1, 10, value=3, step=1, label="How many top confidence classes to be shown?")],
89
+ outputs=[gr.Label(),
90
+ gr.Image(shape=(32, 32), label="Model Prediction").style(width=128, height=128)],
91
+ description=description1,examples=examples)
92
+
93
+ description2 = "Displays misclassified image of the model"
94
+
95
+ # Create a separate interface for the "Misclassified Images" tab
96
+ misclassified_interface = gr.Interface(show_misclassified_images_wrapper,
97
+ inputs=[gr.Number(value=10, label="Number of images to display"),
98
+ gr.Radio(["Yes", "No"], value="No" , label="Show GradCAM outputs"),
99
+ gr.Slider(-2, -1, value=-1, step=1, label="Which layer for GradCAM?"),
100
+ gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM")],
101
+ outputs=gr.Plot(), description=description2)
102
+
103
+ demo = gr.TabbedInterface([input_interface, misclassified_interface], tab_names=["Input an image", "Misclassified Images"],
104
+ title="Custom Resnet on CIFAR10 using GradCAM")
105
+
106
  demo.launch()