Spaces:
Sleeping
Sleeping
Update resnet.py
Browse files
resnet.py
CHANGED
|
@@ -2,10 +2,9 @@ import torch
|
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from torchsummary import summary
|
| 5 |
-
|
|
|
|
| 6 |
import os
|
| 7 |
-
|
| 8 |
-
import torch
|
| 9 |
from pytorch_lightning import LightningModule, Trainer
|
| 10 |
from torch import nn
|
| 11 |
from torch.nn import functional as F
|
|
@@ -15,7 +14,10 @@ from torchvision import transforms
|
|
| 15 |
from torchvision.datasets import CIFAR10
|
| 16 |
from torch_lr_finder import LRFinder
|
| 17 |
import math
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
import torch
|
| 20 |
from torch.utils.data import DataLoader, random_split
|
| 21 |
import torchvision.transforms as transforms
|
|
@@ -24,9 +26,11 @@ import pytorch_lightning as pl
|
|
| 24 |
import matplotlib.pyplot as plt
|
| 25 |
|
| 26 |
|
|
|
|
| 27 |
PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
|
| 28 |
BATCH_SIZE = 256
|
| 29 |
|
|
|
|
| 30 |
# Model
|
| 31 |
class custom_ResNet(pl.LightningModule):
|
| 32 |
def __init__(self, data_dir=PATH_DATASETS, learning_rate=2e-4):
|
|
@@ -184,12 +188,12 @@ class custom_ResNet(pl.LightningModule):
|
|
| 184 |
|
| 185 |
# Assign train/val datasets for use in dataloaders
|
| 186 |
if stage == "fit" or stage is None:
|
| 187 |
-
cifar_full = CIFAR10(self.data_dir, train=True,
|
| 188 |
self.cifar_train, self.cifar_val = random_split(cifar_full, [45000, 5000])
|
| 189 |
|
| 190 |
# Assign test dataset for use in dataloader(s)
|
| 191 |
if stage == "test" or stage is None:
|
| 192 |
-
self.cifar_test = CIFAR10(self.data_dir, train=False,
|
| 193 |
|
| 194 |
def train_dataloader(self):
|
| 195 |
return DataLoader(self.cifar_train, batch_size=BATCH_SIZE, num_workers=os.cpu_count())
|
|
@@ -208,11 +212,12 @@ class custom_ResNet(pl.LightningModule):
|
|
| 208 |
|
| 209 |
for batch in self.test_dataloader():
|
| 210 |
x, y = batch
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
|
|
|
| 216 |
|
| 217 |
num_collected += sum(~misclassified_mask)
|
| 218 |
|
|
@@ -221,36 +226,73 @@ class custom_ResNet(pl.LightningModule):
|
|
| 221 |
|
| 222 |
return misclassified_images[:num_images], misclassified_true_labels[:num_images], misclassified_predicted_labels[:num_images], len(misclassified_images)
|
| 223 |
|
|
|
|
| 224 |
def normalize_image(self, img_tensor):
|
| 225 |
min_val = img_tensor.min()
|
| 226 |
max_val = img_tensor.max()
|
| 227 |
return (img_tensor - min_val) / (max_val - min_val)
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
def show_misclassified_images(self, num_images=10):
|
| 233 |
misclassified_images, true_labels, predicted_labels, num_misclassified = self.collect_misclassified_images(num_images)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
-
num_rows =
|
| 236 |
-
num_cols = math.ceil(num_images / num_rows)
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
plt.subplots_adjust(hspace=0.5) # Adjust vertical space between subplots
|
| 241 |
|
| 242 |
for i in range(num_images):
|
| 243 |
-
img =
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from torchsummary import summary
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
import numpy as np
|
| 7 |
import os
|
|
|
|
|
|
|
| 8 |
from pytorch_lightning import LightningModule, Trainer
|
| 9 |
from torch import nn
|
| 10 |
from torch.nn import functional as F
|
|
|
|
| 14 |
from torchvision.datasets import CIFAR10
|
| 15 |
from torch_lr_finder import LRFinder
|
| 16 |
import math
|
| 17 |
+
from pytorch_grad_cam import GradCAM
|
| 18 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
| 19 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 20 |
+
from PIL import Image
|
| 21 |
import torch
|
| 22 |
from torch.utils.data import DataLoader, random_split
|
| 23 |
import torchvision.transforms as transforms
|
|
|
|
| 26 |
import matplotlib.pyplot as plt
|
| 27 |
|
| 28 |
|
| 29 |
+
|
| 30 |
PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
|
| 31 |
BATCH_SIZE = 256
|
| 32 |
|
| 33 |
+
|
| 34 |
# Model
|
| 35 |
class custom_ResNet(pl.LightningModule):
|
| 36 |
def __init__(self, data_dir=PATH_DATASETS, learning_rate=2e-4):
|
|
|
|
| 188 |
|
| 189 |
# Assign train/val datasets for use in dataloaders
|
| 190 |
if stage == "fit" or stage is None:
|
| 191 |
+
cifar_full = CIFAR10(self.data_dir, train=True, transform=self.train_transform)
|
| 192 |
self.cifar_train, self.cifar_val = random_split(cifar_full, [45000, 5000])
|
| 193 |
|
| 194 |
# Assign test dataset for use in dataloader(s)
|
| 195 |
if stage == "test" or stage is None:
|
| 196 |
+
self.cifar_test = CIFAR10(self.data_dir, train=False, transform=self.test_transform)
|
| 197 |
|
| 198 |
def train_dataloader(self):
|
| 199 |
return DataLoader(self.cifar_train, batch_size=BATCH_SIZE, num_workers=os.cpu_count())
|
|
|
|
| 212 |
|
| 213 |
for batch in self.test_dataloader():
|
| 214 |
x, y = batch
|
| 215 |
+
y_hat = self.forward(x)
|
| 216 |
+
pred = y_hat.argmax(dim=1, keepdim=True)
|
| 217 |
+
misclassified_mask = pred.eq(y.view_as(pred)).squeeze()
|
| 218 |
+
misclassified_images.extend(x[~misclassified_mask].detach()) # Detach here to avoid CPU transfer
|
| 219 |
+
misclassified_true_labels.extend(y[~misclassified_mask].detach()) # Detach here to avoid CPU transfer
|
| 220 |
+
misclassified_predicted_labels.extend(pred[~misclassified_mask].detach()) # Detach here to avoid CPU transfer
|
| 221 |
|
| 222 |
num_collected += sum(~misclassified_mask)
|
| 223 |
|
|
|
|
| 226 |
|
| 227 |
return misclassified_images[:num_images], misclassified_true_labels[:num_images], misclassified_predicted_labels[:num_images], len(misclassified_images)
|
| 228 |
|
| 229 |
+
|
| 230 |
def normalize_image(self, img_tensor):
|
| 231 |
min_val = img_tensor.min()
|
| 232 |
max_val = img_tensor.max()
|
| 233 |
return (img_tensor - min_val) / (max_val - min_val)
|
| 234 |
|
| 235 |
+
def get_gradcam_images(self, target_layer=-1, transparency=0.5, num_images=10):
|
|
|
|
|
|
|
|
|
|
| 236 |
misclassified_images, true_labels, predicted_labels, num_misclassified = self.collect_misclassified_images(num_images)
|
| 237 |
+
count = 0
|
| 238 |
+
k = 0
|
| 239 |
+
misclassified_images_converted = list()
|
| 240 |
+
gradcam_images = list()
|
| 241 |
+
|
| 242 |
+
if target_layer == -2:
|
| 243 |
+
target_layer = self.convblock2_l1.cpu()
|
| 244 |
+
else:
|
| 245 |
+
target_layer = self.convblock3_l1.cpu()
|
| 246 |
+
|
| 247 |
+
dataset_mean, dataset_std = np.array([0.49139968, 0.48215841, 0.44653091]), np.array([0.24703223, 0.24348513, 0.26158784])
|
| 248 |
+
grad_cam = GradCAM(model=self.cpu(), target_layers=target_layer, use_cuda=False) # Move model to CPU
|
| 249 |
+
|
| 250 |
+
for i in range(0, num_images):
|
| 251 |
+
img_converted = misclassified_images[i].cpu().numpy().transpose(1, 2, 0) # Convert tensor to numpy and transpose to (H, W, C)
|
| 252 |
+
img_converted = dataset_std * img_converted + dataset_mean
|
| 253 |
+
img_converted = np.clip(img_converted, 0, 1)
|
| 254 |
+
misclassified_images_converted.append(img_converted)
|
| 255 |
+
targets = [ClassifierOutputTarget(true_labels[i])]
|
| 256 |
+
grayscale_cam = grad_cam(input_tensor=misclassified_images[i].unsqueeze(0).cpu(), targets=targets) # Move input to CPU
|
| 257 |
+
grayscale_cam = grayscale_cam[0, :]
|
| 258 |
+
output = show_cam_on_image(img_converted, grayscale_cam, use_rgb=True, image_weight=transparency)
|
| 259 |
+
gradcam_images.append(output)
|
| 260 |
+
|
| 261 |
+
return gradcam_images
|
| 262 |
+
|
| 263 |
+
# Add a 'use_gradcam' parameter to the show_misclassified_images function
|
| 264 |
+
def show_misclassified_images(self, num_images=10, use_gradcam=False, gradcam_layer=-1, transparency=0.5):
|
| 265 |
+
misclassified_images, true_labels, predicted_labels, num_misclassified = self.collect_misclassified_images(num_images)
|
| 266 |
+
|
| 267 |
+
# Create subplots based on the number of columns required
|
| 268 |
+
num_rows = num_images
|
| 269 |
+
num_cols = 2 if use_gradcam else 1 # Show GradCAM images side by side with misclassified images if 'use_gradcam' is True
|
| 270 |
|
| 271 |
+
fig, axs = plt.subplots(num_rows, num_cols, figsize=(8, 5 * num_rows))
|
|
|
|
| 272 |
|
| 273 |
+
if use_gradcam:
|
| 274 |
+
grad_cam_images = self.get_gradcam_images(target_layer=gradcam_layer, transparency=transparency, num_images=num_images)
|
|
|
|
| 275 |
|
| 276 |
for i in range(num_images):
|
| 277 |
+
img = misclassified_images[i].numpy().transpose((1, 2, 0)) # Convert tensor to numpy and transpose to (H, W, C)
|
| 278 |
+
img = self.normalize_image(img) # Normalize the image
|
| 279 |
+
|
| 280 |
+
if num_cols > 1: # Use multiple columns for subplots
|
| 281 |
+
axs[i, 0].imshow(img)
|
| 282 |
+
axs[i, 0].set_title(f"True label: {self.classes[true_labels[i]]}\nPredicted: {self.classes[predicted_labels[i]]}")
|
| 283 |
+
axs[i, 0].axis("off")
|
| 284 |
+
|
| 285 |
+
if use_gradcam:
|
| 286 |
+
# gradcam_img = grad_cam_images[i].numpy().transpose((1, 2, 0)) # Convert tensor to numpy and transpose to (H, W, C)
|
| 287 |
+
gradcam_img = self.normalize_image(grad_cam_images[i]) # Normalize the image
|
| 288 |
+
axs[i, 1].imshow(gradcam_img)
|
| 289 |
+
axs[i, 1].set_title("GradCAM")
|
| 290 |
+
axs[i, 1].axis("off")
|
| 291 |
+
else: # Use a single column for subplots
|
| 292 |
+
axs[i].imshow(img)
|
| 293 |
+
axs[i].set_title(f"True label: {self.classes[true_labels[i]]}\nPredicted: {self.classes[predicted_labels[i]]}")
|
| 294 |
+
axs[i].axis("off")
|
| 295 |
+
|
| 296 |
+
fig.tight_layout()
|
| 297 |
+
return fig
|
| 298 |
+
|