mkthoma commited on
Commit
b364000
·
1 Parent(s): e9a5640

Update resnet.py

Browse files
Files changed (1) hide show
  1. resnet.py +76 -34
resnet.py CHANGED
@@ -2,10 +2,9 @@ import torch
2
  import torch.nn as nn
3
  import torch.nn.functional as F
4
  from torchsummary import summary
5
- # imports
 
6
  import os
7
-
8
- import torch
9
  from pytorch_lightning import LightningModule, Trainer
10
  from torch import nn
11
  from torch.nn import functional as F
@@ -15,7 +14,10 @@ from torchvision import transforms
15
  from torchvision.datasets import CIFAR10
16
  from torch_lr_finder import LRFinder
17
  import math
18
-
 
 
 
19
  import torch
20
  from torch.utils.data import DataLoader, random_split
21
  import torchvision.transforms as transforms
@@ -24,9 +26,11 @@ import pytorch_lightning as pl
24
  import matplotlib.pyplot as plt
25
 
26
 
 
27
  PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
28
  BATCH_SIZE = 256
29
 
 
30
  # Model
31
  class custom_ResNet(pl.LightningModule):
32
  def __init__(self, data_dir=PATH_DATASETS, learning_rate=2e-4):
@@ -184,12 +188,12 @@ class custom_ResNet(pl.LightningModule):
184
 
185
  # Assign train/val datasets for use in dataloaders
186
  if stage == "fit" or stage is None:
187
- cifar_full = CIFAR10(self.data_dir, train=True, download=True, transform=self.train_transform)
188
  self.cifar_train, self.cifar_val = random_split(cifar_full, [45000, 5000])
189
 
190
  # Assign test dataset for use in dataloader(s)
191
  if stage == "test" or stage is None:
192
- self.cifar_test = CIFAR10(self.data_dir, train=False, download=True, transform=self.test_transform)
193
 
194
  def train_dataloader(self):
195
  return DataLoader(self.cifar_train, batch_size=BATCH_SIZE, num_workers=os.cpu_count())
@@ -208,11 +212,12 @@ class custom_ResNet(pl.LightningModule):
208
 
209
  for batch in self.test_dataloader():
210
  x, y = batch
211
- pred = self.forward(x).argmax(dim=1, keepdim=True)
212
- misclassified_mask = pred.eq(y.view_as(pred)).squeeze().cpu().numpy()
213
- misclassified_images.extend(x[~misclassified_mask])
214
- misclassified_true_labels.extend(y[~misclassified_mask])
215
- misclassified_predicted_labels.extend(pred[~misclassified_mask])
 
216
 
217
  num_collected += sum(~misclassified_mask)
218
 
@@ -221,36 +226,73 @@ class custom_ResNet(pl.LightningModule):
221
 
222
  return misclassified_images[:num_images], misclassified_true_labels[:num_images], misclassified_predicted_labels[:num_images], len(misclassified_images)
223
 
 
224
  def normalize_image(self, img_tensor):
225
  min_val = img_tensor.min()
226
  max_val = img_tensor.max()
227
  return (img_tensor - min_val) / (max_val - min_val)
228
 
229
-
230
-
231
-
232
- def show_misclassified_images(self, num_images=10):
233
  misclassified_images, true_labels, predicted_labels, num_misclassified = self.collect_misclassified_images(num_images)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
 
235
- num_rows = 2
236
- num_cols = math.ceil(num_images / num_rows)
237
 
238
- fig, axs = plt.subplots(num_rows, num_cols, figsize=(5 * num_cols, 5 * num_rows))
239
- fig.suptitle(f"Misclassified Images (Showing {num_images} out of {num_misclassified})")
240
- plt.subplots_adjust(hspace=0.5) # Adjust vertical space between subplots
241
 
242
  for i in range(num_images):
243
- img = self.normalize_image(misclassified_images[i]).permute(1, 2, 0)
244
- row_idx = i // num_cols
245
- col_idx = i % num_cols
246
- axs[row_idx, col_idx].imshow(img)
247
- axs[row_idx, col_idx].set_title(f"True label: {self.classes[true_labels[i]]}\nPredicted: {self.classes[predicted_labels[i]]}")
248
- axs[row_idx, col_idx].axis("off")
249
-
250
- # Remove any empty subplots in the last row (when num_images is not divisible by num_rows)
251
- for i in range(num_images, num_rows * num_cols):
252
- row_idx = i // num_cols
253
- col_idx = i % num_cols
254
- axs[row_idx, col_idx].remove()
255
-
256
- plt.show()
 
 
 
 
 
 
 
 
 
2
  import torch.nn as nn
3
  import torch.nn.functional as F
4
  from torchsummary import summary
5
+ from io import BytesIO
6
+ import numpy as np
7
  import os
 
 
8
  from pytorch_lightning import LightningModule, Trainer
9
  from torch import nn
10
  from torch.nn import functional as F
 
14
  from torchvision.datasets import CIFAR10
15
  from torch_lr_finder import LRFinder
16
  import math
17
+ from pytorch_grad_cam import GradCAM
18
+ from pytorch_grad_cam.utils.image import show_cam_on_image
19
+ from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
20
+ from PIL import Image
21
  import torch
22
  from torch.utils.data import DataLoader, random_split
23
  import torchvision.transforms as transforms
 
26
  import matplotlib.pyplot as plt
27
 
28
 
29
+
30
  PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
31
  BATCH_SIZE = 256
32
 
33
+
34
  # Model
35
  class custom_ResNet(pl.LightningModule):
36
  def __init__(self, data_dir=PATH_DATASETS, learning_rate=2e-4):
 
188
 
189
  # Assign train/val datasets for use in dataloaders
190
  if stage == "fit" or stage is None:
191
+ cifar_full = CIFAR10(self.data_dir, train=True, transform=self.train_transform)
192
  self.cifar_train, self.cifar_val = random_split(cifar_full, [45000, 5000])
193
 
194
  # Assign test dataset for use in dataloader(s)
195
  if stage == "test" or stage is None:
196
+ self.cifar_test = CIFAR10(self.data_dir, train=False, transform=self.test_transform)
197
 
198
  def train_dataloader(self):
199
  return DataLoader(self.cifar_train, batch_size=BATCH_SIZE, num_workers=os.cpu_count())
 
212
 
213
  for batch in self.test_dataloader():
214
  x, y = batch
215
+ y_hat = self.forward(x)
216
+ pred = y_hat.argmax(dim=1, keepdim=True)
217
+ misclassified_mask = pred.eq(y.view_as(pred)).squeeze()
218
+ misclassified_images.extend(x[~misclassified_mask].detach()) # Detach here to avoid CPU transfer
219
+ misclassified_true_labels.extend(y[~misclassified_mask].detach()) # Detach here to avoid CPU transfer
220
+ misclassified_predicted_labels.extend(pred[~misclassified_mask].detach()) # Detach here to avoid CPU transfer
221
 
222
  num_collected += sum(~misclassified_mask)
223
 
 
226
 
227
  return misclassified_images[:num_images], misclassified_true_labels[:num_images], misclassified_predicted_labels[:num_images], len(misclassified_images)
228
 
229
+
230
  def normalize_image(self, img_tensor):
231
  min_val = img_tensor.min()
232
  max_val = img_tensor.max()
233
  return (img_tensor - min_val) / (max_val - min_val)
234
 
235
+ def get_gradcam_images(self, target_layer=-1, transparency=0.5, num_images=10):
 
 
 
236
  misclassified_images, true_labels, predicted_labels, num_misclassified = self.collect_misclassified_images(num_images)
237
+ count = 0
238
+ k = 0
239
+ misclassified_images_converted = list()
240
+ gradcam_images = list()
241
+
242
+ if target_layer == -2:
243
+ target_layer = self.convblock2_l1.cpu()
244
+ else:
245
+ target_layer = self.convblock3_l1.cpu()
246
+
247
+ dataset_mean, dataset_std = np.array([0.49139968, 0.48215841, 0.44653091]), np.array([0.24703223, 0.24348513, 0.26158784])
248
+ grad_cam = GradCAM(model=self.cpu(), target_layers=target_layer, use_cuda=False) # Move model to CPU
249
+
250
+ for i in range(0, num_images):
251
+ img_converted = misclassified_images[i].cpu().numpy().transpose(1, 2, 0) # Convert tensor to numpy and transpose to (H, W, C)
252
+ img_converted = dataset_std * img_converted + dataset_mean
253
+ img_converted = np.clip(img_converted, 0, 1)
254
+ misclassified_images_converted.append(img_converted)
255
+ targets = [ClassifierOutputTarget(true_labels[i])]
256
+ grayscale_cam = grad_cam(input_tensor=misclassified_images[i].unsqueeze(0).cpu(), targets=targets) # Move input to CPU
257
+ grayscale_cam = grayscale_cam[0, :]
258
+ output = show_cam_on_image(img_converted, grayscale_cam, use_rgb=True, image_weight=transparency)
259
+ gradcam_images.append(output)
260
+
261
+ return gradcam_images
262
+
263
+ # Add a 'use_gradcam' parameter to the show_misclassified_images function
264
+ def show_misclassified_images(self, num_images=10, use_gradcam=False, gradcam_layer=-1, transparency=0.5):
265
+ misclassified_images, true_labels, predicted_labels, num_misclassified = self.collect_misclassified_images(num_images)
266
+
267
+ # Create subplots based on the number of columns required
268
+ num_rows = num_images
269
+ num_cols = 2 if use_gradcam else 1 # Show GradCAM images side by side with misclassified images if 'use_gradcam' is True
270
 
271
+ fig, axs = plt.subplots(num_rows, num_cols, figsize=(8, 5 * num_rows))
 
272
 
273
+ if use_gradcam:
274
+ grad_cam_images = self.get_gradcam_images(target_layer=gradcam_layer, transparency=transparency, num_images=num_images)
 
275
 
276
  for i in range(num_images):
277
+ img = misclassified_images[i].numpy().transpose((1, 2, 0)) # Convert tensor to numpy and transpose to (H, W, C)
278
+ img = self.normalize_image(img) # Normalize the image
279
+
280
+ if num_cols > 1: # Use multiple columns for subplots
281
+ axs[i, 0].imshow(img)
282
+ axs[i, 0].set_title(f"True label: {self.classes[true_labels[i]]}\nPredicted: {self.classes[predicted_labels[i]]}")
283
+ axs[i, 0].axis("off")
284
+
285
+ if use_gradcam:
286
+ # gradcam_img = grad_cam_images[i].numpy().transpose((1, 2, 0)) # Convert tensor to numpy and transpose to (H, W, C)
287
+ gradcam_img = self.normalize_image(grad_cam_images[i]) # Normalize the image
288
+ axs[i, 1].imshow(gradcam_img)
289
+ axs[i, 1].set_title("GradCAM")
290
+ axs[i, 1].axis("off")
291
+ else: # Use a single column for subplots
292
+ axs[i].imshow(img)
293
+ axs[i].set_title(f"True label: {self.classes[true_labels[i]]}\nPredicted: {self.classes[predicted_labels[i]]}")
294
+ axs[i].axis("off")
295
+
296
+ fig.tight_layout()
297
+ return fig
298
+