Spaces:
Sleeping
Sleeping
Update resnet.py
Browse files
resnet.py
CHANGED
@@ -2,10 +2,9 @@ import torch
|
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
from torchsummary import summary
|
5 |
-
|
|
|
6 |
import os
|
7 |
-
|
8 |
-
import torch
|
9 |
from pytorch_lightning import LightningModule, Trainer
|
10 |
from torch import nn
|
11 |
from torch.nn import functional as F
|
@@ -15,7 +14,10 @@ from torchvision import transforms
|
|
15 |
from torchvision.datasets import CIFAR10
|
16 |
from torch_lr_finder import LRFinder
|
17 |
import math
|
18 |
-
|
|
|
|
|
|
|
19 |
import torch
|
20 |
from torch.utils.data import DataLoader, random_split
|
21 |
import torchvision.transforms as transforms
|
@@ -24,9 +26,11 @@ import pytorch_lightning as pl
|
|
24 |
import matplotlib.pyplot as plt
|
25 |
|
26 |
|
|
|
27 |
PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
|
28 |
BATCH_SIZE = 256
|
29 |
|
|
|
30 |
# Model
|
31 |
class custom_ResNet(pl.LightningModule):
|
32 |
def __init__(self, data_dir=PATH_DATASETS, learning_rate=2e-4):
|
@@ -184,12 +188,12 @@ class custom_ResNet(pl.LightningModule):
|
|
184 |
|
185 |
# Assign train/val datasets for use in dataloaders
|
186 |
if stage == "fit" or stage is None:
|
187 |
-
cifar_full = CIFAR10(self.data_dir, train=True,
|
188 |
self.cifar_train, self.cifar_val = random_split(cifar_full, [45000, 5000])
|
189 |
|
190 |
# Assign test dataset for use in dataloader(s)
|
191 |
if stage == "test" or stage is None:
|
192 |
-
self.cifar_test = CIFAR10(self.data_dir, train=False,
|
193 |
|
194 |
def train_dataloader(self):
|
195 |
return DataLoader(self.cifar_train, batch_size=BATCH_SIZE, num_workers=os.cpu_count())
|
@@ -208,11 +212,12 @@ class custom_ResNet(pl.LightningModule):
|
|
208 |
|
209 |
for batch in self.test_dataloader():
|
210 |
x, y = batch
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
216 |
|
217 |
num_collected += sum(~misclassified_mask)
|
218 |
|
@@ -221,36 +226,73 @@ class custom_ResNet(pl.LightningModule):
|
|
221 |
|
222 |
return misclassified_images[:num_images], misclassified_true_labels[:num_images], misclassified_predicted_labels[:num_images], len(misclassified_images)
|
223 |
|
|
|
224 |
def normalize_image(self, img_tensor):
|
225 |
min_val = img_tensor.min()
|
226 |
max_val = img_tensor.max()
|
227 |
return (img_tensor - min_val) / (max_val - min_val)
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
def show_misclassified_images(self, num_images=10):
|
233 |
misclassified_images, true_labels, predicted_labels, num_misclassified = self.collect_misclassified_images(num_images)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
num_rows =
|
236 |
-
num_cols = math.ceil(num_images / num_rows)
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
plt.subplots_adjust(hspace=0.5) # Adjust vertical space between subplots
|
241 |
|
242 |
for i in range(num_images):
|
243 |
-
img =
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
4 |
from torchsummary import summary
|
5 |
+
from io import BytesIO
|
6 |
+
import numpy as np
|
7 |
import os
|
|
|
|
|
8 |
from pytorch_lightning import LightningModule, Trainer
|
9 |
from torch import nn
|
10 |
from torch.nn import functional as F
|
|
|
14 |
from torchvision.datasets import CIFAR10
|
15 |
from torch_lr_finder import LRFinder
|
16 |
import math
|
17 |
+
from pytorch_grad_cam import GradCAM
|
18 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
19 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
20 |
+
from PIL import Image
|
21 |
import torch
|
22 |
from torch.utils.data import DataLoader, random_split
|
23 |
import torchvision.transforms as transforms
|
|
|
26 |
import matplotlib.pyplot as plt
|
27 |
|
28 |
|
29 |
+
|
30 |
PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
|
31 |
BATCH_SIZE = 256
|
32 |
|
33 |
+
|
34 |
# Model
|
35 |
class custom_ResNet(pl.LightningModule):
|
36 |
def __init__(self, data_dir=PATH_DATASETS, learning_rate=2e-4):
|
|
|
188 |
|
189 |
# Assign train/val datasets for use in dataloaders
|
190 |
if stage == "fit" or stage is None:
|
191 |
+
cifar_full = CIFAR10(self.data_dir, train=True, transform=self.train_transform)
|
192 |
self.cifar_train, self.cifar_val = random_split(cifar_full, [45000, 5000])
|
193 |
|
194 |
# Assign test dataset for use in dataloader(s)
|
195 |
if stage == "test" or stage is None:
|
196 |
+
self.cifar_test = CIFAR10(self.data_dir, train=False, transform=self.test_transform)
|
197 |
|
198 |
def train_dataloader(self):
|
199 |
return DataLoader(self.cifar_train, batch_size=BATCH_SIZE, num_workers=os.cpu_count())
|
|
|
212 |
|
213 |
for batch in self.test_dataloader():
|
214 |
x, y = batch
|
215 |
+
y_hat = self.forward(x)
|
216 |
+
pred = y_hat.argmax(dim=1, keepdim=True)
|
217 |
+
misclassified_mask = pred.eq(y.view_as(pred)).squeeze()
|
218 |
+
misclassified_images.extend(x[~misclassified_mask].detach()) # Detach here to avoid CPU transfer
|
219 |
+
misclassified_true_labels.extend(y[~misclassified_mask].detach()) # Detach here to avoid CPU transfer
|
220 |
+
misclassified_predicted_labels.extend(pred[~misclassified_mask].detach()) # Detach here to avoid CPU transfer
|
221 |
|
222 |
num_collected += sum(~misclassified_mask)
|
223 |
|
|
|
226 |
|
227 |
return misclassified_images[:num_images], misclassified_true_labels[:num_images], misclassified_predicted_labels[:num_images], len(misclassified_images)
|
228 |
|
229 |
+
|
230 |
def normalize_image(self, img_tensor):
|
231 |
min_val = img_tensor.min()
|
232 |
max_val = img_tensor.max()
|
233 |
return (img_tensor - min_val) / (max_val - min_val)
|
234 |
|
235 |
+
def get_gradcam_images(self, target_layer=-1, transparency=0.5, num_images=10):
|
|
|
|
|
|
|
236 |
misclassified_images, true_labels, predicted_labels, num_misclassified = self.collect_misclassified_images(num_images)
|
237 |
+
count = 0
|
238 |
+
k = 0
|
239 |
+
misclassified_images_converted = list()
|
240 |
+
gradcam_images = list()
|
241 |
+
|
242 |
+
if target_layer == -2:
|
243 |
+
target_layer = self.convblock2_l1.cpu()
|
244 |
+
else:
|
245 |
+
target_layer = self.convblock3_l1.cpu()
|
246 |
+
|
247 |
+
dataset_mean, dataset_std = np.array([0.49139968, 0.48215841, 0.44653091]), np.array([0.24703223, 0.24348513, 0.26158784])
|
248 |
+
grad_cam = GradCAM(model=self.cpu(), target_layers=target_layer, use_cuda=False) # Move model to CPU
|
249 |
+
|
250 |
+
for i in range(0, num_images):
|
251 |
+
img_converted = misclassified_images[i].cpu().numpy().transpose(1, 2, 0) # Convert tensor to numpy and transpose to (H, W, C)
|
252 |
+
img_converted = dataset_std * img_converted + dataset_mean
|
253 |
+
img_converted = np.clip(img_converted, 0, 1)
|
254 |
+
misclassified_images_converted.append(img_converted)
|
255 |
+
targets = [ClassifierOutputTarget(true_labels[i])]
|
256 |
+
grayscale_cam = grad_cam(input_tensor=misclassified_images[i].unsqueeze(0).cpu(), targets=targets) # Move input to CPU
|
257 |
+
grayscale_cam = grayscale_cam[0, :]
|
258 |
+
output = show_cam_on_image(img_converted, grayscale_cam, use_rgb=True, image_weight=transparency)
|
259 |
+
gradcam_images.append(output)
|
260 |
+
|
261 |
+
return gradcam_images
|
262 |
+
|
263 |
+
# Add a 'use_gradcam' parameter to the show_misclassified_images function
|
264 |
+
def show_misclassified_images(self, num_images=10, use_gradcam=False, gradcam_layer=-1, transparency=0.5):
|
265 |
+
misclassified_images, true_labels, predicted_labels, num_misclassified = self.collect_misclassified_images(num_images)
|
266 |
+
|
267 |
+
# Create subplots based on the number of columns required
|
268 |
+
num_rows = num_images
|
269 |
+
num_cols = 2 if use_gradcam else 1 # Show GradCAM images side by side with misclassified images if 'use_gradcam' is True
|
270 |
|
271 |
+
fig, axs = plt.subplots(num_rows, num_cols, figsize=(8, 5 * num_rows))
|
|
|
272 |
|
273 |
+
if use_gradcam:
|
274 |
+
grad_cam_images = self.get_gradcam_images(target_layer=gradcam_layer, transparency=transparency, num_images=num_images)
|
|
|
275 |
|
276 |
for i in range(num_images):
|
277 |
+
img = misclassified_images[i].numpy().transpose((1, 2, 0)) # Convert tensor to numpy and transpose to (H, W, C)
|
278 |
+
img = self.normalize_image(img) # Normalize the image
|
279 |
+
|
280 |
+
if num_cols > 1: # Use multiple columns for subplots
|
281 |
+
axs[i, 0].imshow(img)
|
282 |
+
axs[i, 0].set_title(f"True label: {self.classes[true_labels[i]]}\nPredicted: {self.classes[predicted_labels[i]]}")
|
283 |
+
axs[i, 0].axis("off")
|
284 |
+
|
285 |
+
if use_gradcam:
|
286 |
+
# gradcam_img = grad_cam_images[i].numpy().transpose((1, 2, 0)) # Convert tensor to numpy and transpose to (H, W, C)
|
287 |
+
gradcam_img = self.normalize_image(grad_cam_images[i]) # Normalize the image
|
288 |
+
axs[i, 1].imshow(gradcam_img)
|
289 |
+
axs[i, 1].set_title("GradCAM")
|
290 |
+
axs[i, 1].axis("off")
|
291 |
+
else: # Use a single column for subplots
|
292 |
+
axs[i].imshow(img)
|
293 |
+
axs[i].set_title(f"True label: {self.classes[true_labels[i]]}\nPredicted: {self.classes[predicted_labels[i]]}")
|
294 |
+
axs[i].axis("off")
|
295 |
+
|
296 |
+
fig.tight_layout()
|
297 |
+
return fig
|
298 |
+
|