Spaces:
Runtime error
Runtime error
first commit
Browse files- Dockerfile +11 -0
- EarningsTranscripts (PDF)/AAPL/Apple (AAPL) Q2 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) CEO Tim Cook on Q1 2022 Results - Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) CEO Tim Cook on Q2 2022 Results - Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q3 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q4 2022 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q4 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/AAPL/Apple, Inc. (AAPL) CEO Tim Cook on Q3 2022 Results - Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/AAPL/Apple, Inc. (AAPL) Q1 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) CEO Sundar Pichai on Q2 2022 Results - Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q1 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q2 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q3 2022 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q3 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q4 2022 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/GOOG/Alphabet Inc.'s (GOOG) CEO Sundar Pichai on Q1 2022 Results - Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) CEO Satya Nadella on Q1 Fiscal 2022 Results - Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) CEO Satya Nadella on Q4 2022 Results - Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q1 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q1 2024 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q2 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q3 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q4 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/MSFT/Microsoft Corporation's (MSFT) CEO Satya Nadella on Q2 2022 Results - Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/MSFT/Microsoft's (MSFT) CEO Satya Nadella on Q3 2022 Results - Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q1 2024 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q2 2024 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q4 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) CEO Jensen Huang On Q1 2023 Results - Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) CEO Jensen Huang on Q2 2023 Results - Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) Q3 2023 Earnings Call Transcript.pdf +0 -0
- EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) Q3 2024 Earnings Call Transcript.pdf +0 -0
- README.md +4 -4
- app.py +35 -0
- chainlit.md +11 -0
- earnings_app.py +170 -0
- requirements.txt +12 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
RUN useradd -m -u 1000 user
|
3 |
+
USER user
|
4 |
+
ENV HOME=/home/user \
|
5 |
+
PATH=/home/user/.local/bin:$PATH
|
6 |
+
WORKDIR $HOME/app
|
7 |
+
COPY --chown=user . $HOME/app
|
8 |
+
COPY ./requirements.txt ~/app/requirements.txt
|
9 |
+
RUN pip install -r requirements.txt
|
10 |
+
COPY . .
|
11 |
+
CMD ["chainlit", "run", "app.py", "--port", "7860"]
|
EarningsTranscripts (PDF)/AAPL/Apple (AAPL) Q2 2023 Earnings Call Transcript.pdf
ADDED
Binary file (138 kB). View file
|
|
EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) CEO Tim Cook on Q1 2022 Results - Earnings Call Transcript.pdf
ADDED
Binary file (133 kB). View file
|
|
EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) CEO Tim Cook on Q2 2022 Results - Earnings Call Transcript.pdf
ADDED
Binary file (140 kB). View file
|
|
EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q3 2023 Earnings Call Transcript.pdf
ADDED
Binary file (137 kB). View file
|
|
EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q4 2022 Earnings Call Transcript.pdf
ADDED
Binary file (144 kB). View file
|
|
EarningsTranscripts (PDF)/AAPL/Apple Inc. (AAPL) Q4 2023 Earnings Call Transcript.pdf
ADDED
Binary file (145 kB). View file
|
|
EarningsTranscripts (PDF)/AAPL/Apple, Inc. (AAPL) CEO Tim Cook on Q3 2022 Results - Earnings Call Transcript.pdf
ADDED
Binary file (135 kB). View file
|
|
EarningsTranscripts (PDF)/AAPL/Apple, Inc. (AAPL) Q1 2023 Earnings Call Transcript.pdf
ADDED
Binary file (133 kB). View file
|
|
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) CEO Sundar Pichai on Q2 2022 Results - Earnings Call Transcript.pdf
ADDED
Binary file (135 kB). View file
|
|
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q1 2023 Earnings Call Transcript.pdf
ADDED
Binary file (144 kB). View file
|
|
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q2 2023 Earnings Call Transcript.pdf
ADDED
Binary file (142 kB). View file
|
|
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q3 2022 Earnings Call Transcript.pdf
ADDED
Binary file (140 kB). View file
|
|
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q3 2023 Earnings Call Transcript.pdf
ADDED
Binary file (133 kB). View file
|
|
EarningsTranscripts (PDF)/GOOG/Alphabet Inc. (GOOG) Q4 2022 Earnings Call Transcript.pdf
ADDED
Binary file (137 kB). View file
|
|
EarningsTranscripts (PDF)/GOOG/Alphabet Inc.'s (GOOG) CEO Sundar Pichai on Q1 2022 Results - Earnings Call Transcript.pdf
ADDED
Binary file (133 kB). View file
|
|
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) CEO Satya Nadella on Q1 Fiscal 2022 Results - Earnings Call Transcript.pdf
ADDED
Binary file (150 kB). View file
|
|
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) CEO Satya Nadella on Q4 2022 Results - Earnings Call Transcript.pdf
ADDED
Binary file (148 kB). View file
|
|
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q1 2023 Earnings Call Transcript.pdf
ADDED
Binary file (154 kB). View file
|
|
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q1 2024 Earnings Call Transcript.pdf
ADDED
Binary file (148 kB). View file
|
|
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q2 2023 Earnings Call Transcript.pdf
ADDED
Binary file (149 kB). View file
|
|
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q3 2023 Earnings Call Transcript.pdf
ADDED
Binary file (150 kB). View file
|
|
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation (MSFT) Q4 2023 Earnings Call Transcript.pdf
ADDED
Binary file (155 kB). View file
|
|
EarningsTranscripts (PDF)/MSFT/Microsoft Corporation's (MSFT) CEO Satya Nadella on Q2 2022 Results - Earnings Call Transcript.pdf
ADDED
Binary file (151 kB). View file
|
|
EarningsTranscripts (PDF)/MSFT/Microsoft's (MSFT) CEO Satya Nadella on Q3 2022 Results - Earnings Call Transcript.pdf
ADDED
Binary file (157 kB). View file
|
|
EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q1 2024 Earnings Call Transcript.pdf
ADDED
Binary file (149 kB). View file
|
|
EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q2 2024 Earnings Call Transcript.pdf
ADDED
Binary file (139 kB). View file
|
|
EarningsTranscripts (PDF)/NVDA/NVIDIA Corp. (NVDA) Q4 2023 Earnings Call Transcript.pdf
ADDED
Binary file (132 kB). View file
|
|
EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) CEO Jensen Huang On Q1 2023 Results - Earnings Call Transcript.pdf
ADDED
Binary file (140 kB). View file
|
|
EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) CEO Jensen Huang on Q2 2023 Results - Earnings Call Transcript.pdf
ADDED
Binary file (137 kB). View file
|
|
EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) Q3 2023 Earnings Call Transcript.pdf
ADDED
Binary file (135 kB). View file
|
|
EarningsTranscripts (PDF)/NVDA/NVIDIA Corporation (NVDA) Q3 2024 Earnings Call Transcript.pdf
ADDED
Binary file (148 kB). View file
|
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
+
title: Barbie RAQA Application Chainlit Demo
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: red
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: apache-2.0
|
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
sys.path.append(".")
|
4 |
+
|
5 |
+
import chainlit as cl
|
6 |
+
|
7 |
+
from earnings_app import extract_information
|
8 |
+
|
9 |
+
@cl.author_rename
|
10 |
+
def rename(orig_author: str):
|
11 |
+
diamond_char = u'\U0001F537'
|
12 |
+
phrase = diamond_char + " Diamond Hands " + diamond_char
|
13 |
+
rename_dict = {"RetrievalQA": phrase}
|
14 |
+
return rename_dict.get(orig_author, orig_author)
|
15 |
+
|
16 |
+
@cl.on_chat_start
|
17 |
+
async def start():
|
18 |
+
"""
|
19 |
+
This is called when the Chainlit chat is started!
|
20 |
+
"""
|
21 |
+
chain = await extract_information()
|
22 |
+
cl.user_session.set("chain", chain)
|
23 |
+
await cl.Message("Welcome to the information extraction chat!").send()
|
24 |
+
|
25 |
+
@cl.on_message
|
26 |
+
async def main(message: cl.Message):
|
27 |
+
"""
|
28 |
+
This is called when a message is received!
|
29 |
+
"""
|
30 |
+
chain = cl.user_session.get("chain")
|
31 |
+
res = await chain.achat(message.content)
|
32 |
+
# res = await chain.aiinvoke({"input": message})
|
33 |
+
# res = res["text"]
|
34 |
+
out = str(res)
|
35 |
+
await cl.Message(content=out).send()
|
chainlit.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Assignment Part 2: Deploying Your Model to a Hugging Face Space
|
2 |
+
|
3 |
+
Now that you've done the hard work of setting up the RetrievalQA chain and sourcing your documents - let's tie it together in a ChainLit application.
|
4 |
+
|
5 |
+
### Duplicating the Space
|
6 |
+
|
7 |
+
Since this is our first assignment, all you'll need to do is duplicate this space and add your own `OPENAI_API_KEY` as a secret in the space.
|
8 |
+
|
9 |
+
### Conclusion
|
10 |
+
|
11 |
+
Now that you've shipped an LLM-powered application, it's time to share! 🚀
|
earnings_app.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Imports
|
3 |
+
import asyncio
|
4 |
+
import os
|
5 |
+
import openai
|
6 |
+
|
7 |
+
from typing import List, Optional
|
8 |
+
# from pydantic import BaseModel, Field
|
9 |
+
|
10 |
+
# from langchain.prompts import ChatPromptTemplate
|
11 |
+
# from langchain.pydantic_v1 import BaseModel
|
12 |
+
# from langchain.utils.openai_functions import convert_pydantic_to_openai_function
|
13 |
+
from llama_index.tools import FunctionTool
|
14 |
+
from llama_index.vector_stores.types import (
|
15 |
+
VectorStoreInfo,
|
16 |
+
MetadataInfo,
|
17 |
+
ExactMatchFilter,
|
18 |
+
MetadataFilters,
|
19 |
+
)
|
20 |
+
from llama_index.agent import OpenAIAgent
|
21 |
+
from llama_index.retrievers import VectorIndexRetriever
|
22 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
23 |
+
|
24 |
+
from typing import List, Tuple, Any
|
25 |
+
from pydantic import BaseModel, Field
|
26 |
+
from llama_index import load_index_from_storage
|
27 |
+
from llama_index import set_global_handler
|
28 |
+
import llama_index
|
29 |
+
from llama_index.embeddings import OpenAIEmbedding
|
30 |
+
from llama_index import ServiceContext
|
31 |
+
from llama_index.llms import OpenAI
|
32 |
+
from llama_index import GPTVectorStoreIndex
|
33 |
+
|
34 |
+
set_global_handler("wandb", run_args={"project": "final-project-v1"})
|
35 |
+
wandb_callback = llama_index.global_handler
|
36 |
+
|
37 |
+
from dotenv import load_dotenv
|
38 |
+
load_dotenv()
|
39 |
+
|
40 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
41 |
+
|
42 |
+
top_k = 3
|
43 |
+
|
44 |
+
vector_store_info = VectorStoreInfo(
|
45 |
+
content_info="transcripts of earnings calls",
|
46 |
+
metadata_info=[MetadataInfo(
|
47 |
+
name="title",
|
48 |
+
type="str",
|
49 |
+
description="Title of the earnings call",
|
50 |
+
),
|
51 |
+
MetadataInfo(
|
52 |
+
name="period",
|
53 |
+
type="str",
|
54 |
+
description="Period of the earnings call"
|
55 |
+
),
|
56 |
+
MetadataInfo(
|
57 |
+
name="ticker",
|
58 |
+
type="str",
|
59 |
+
description="Ticker of the company"
|
60 |
+
),
|
61 |
+
MetadataInfo(
|
62 |
+
name="year",
|
63 |
+
type="str",
|
64 |
+
description="Year of the earnings call"
|
65 |
+
),
|
66 |
+
MetadataInfo(
|
67 |
+
name="quarter",
|
68 |
+
type="str",
|
69 |
+
description="Quarter of the earnings call"
|
70 |
+
),
|
71 |
+
MetadataInfo(
|
72 |
+
name="path",
|
73 |
+
type="str",
|
74 |
+
description="Path to the earnings call"
|
75 |
+
),
|
76 |
+
])
|
77 |
+
|
78 |
+
class AutoRetrieveModel(BaseModel):
|
79 |
+
query: str = Field(..., description="natural language query string")
|
80 |
+
filter_key_list: List[str] = Field(
|
81 |
+
..., description="List of metadata filter field names"
|
82 |
+
)
|
83 |
+
filter_value_list: List[str] = Field(
|
84 |
+
...,
|
85 |
+
description=(
|
86 |
+
"List of metadata filter field values (corresponding to names specified in filter_key_list)"
|
87 |
+
)
|
88 |
+
)
|
89 |
+
|
90 |
+
embed_model = OpenAIEmbedding()
|
91 |
+
chunk_size = 500
|
92 |
+
|
93 |
+
llm = OpenAI(
|
94 |
+
temperature=0,
|
95 |
+
model="gpt-4" ### YOUR CODE HERE
|
96 |
+
)
|
97 |
+
|
98 |
+
service_context = ServiceContext.from_defaults(
|
99 |
+
llm=llm,
|
100 |
+
chunk_size=chunk_size,
|
101 |
+
embed_model=embed_model,
|
102 |
+
)
|
103 |
+
|
104 |
+
index = GPTVectorStoreIndex.from_documents([], service_context=service_context)
|
105 |
+
|
106 |
+
|
107 |
+
# Main function to extract information
|
108 |
+
async def extract_information():
|
109 |
+
# Make sure to use a recent model that supports tools
|
110 |
+
|
111 |
+
storage_context = wandb_callback.load_storage_context(
|
112 |
+
artifact_url="llmop/final-project-v1/earnings-index:v1"
|
113 |
+
)
|
114 |
+
|
115 |
+
index = load_index_from_storage(storage_context, service_context=service_context)
|
116 |
+
|
117 |
+
def auto_retrieve_fn(
|
118 |
+
query: str, filter_key_list: List[str], filter_value_list: List[str]
|
119 |
+
):
|
120 |
+
"""Auto retrieval function.
|
121 |
+
|
122 |
+
Performs auto-retrieval from a vector database, and then applies a set of filters.
|
123 |
+
|
124 |
+
"""
|
125 |
+
query = query or "Query"
|
126 |
+
|
127 |
+
exact_match_filters = [
|
128 |
+
ExactMatchFilter(key=k, value=v)
|
129 |
+
for k, v in zip(filter_key_list, filter_value_list)
|
130 |
+
]
|
131 |
+
retriever = VectorIndexRetriever(
|
132 |
+
index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
|
133 |
+
)
|
134 |
+
query_engine = RetrieverQueryEngine.from_args(retriever, service_context=service_context)
|
135 |
+
|
136 |
+
response = query_engine.query(query)
|
137 |
+
return str(response)
|
138 |
+
|
139 |
+
description = f"""
|
140 |
+
Who is the CEO of MSFT
|
141 |
+
The vector database schema is given below:
|
142 |
+
{vector_store_info.json()}
|
143 |
+
"""
|
144 |
+
auto_retrieve_tool = FunctionTool.from_defaults(
|
145 |
+
fn=auto_retrieve_fn,
|
146 |
+
name="earnings-transcripts",
|
147 |
+
description=description,
|
148 |
+
fn_schema=AutoRetrieveModel
|
149 |
+
)
|
150 |
+
|
151 |
+
agent = OpenAIAgent.from_tools(
|
152 |
+
tools=[auto_retrieve_tool],
|
153 |
+
)
|
154 |
+
|
155 |
+
return agent
|
156 |
+
|
157 |
+
|
158 |
+
# if __name__ == "__main__":
|
159 |
+
# text = "Who is the CEO of MSFT."
|
160 |
+
# chain = extract_information()
|
161 |
+
# print(str(chain.chat(text)))
|
162 |
+
|
163 |
+
# async def extract_information_async(message: str):
|
164 |
+
# return str(chain.chat(text))
|
165 |
+
|
166 |
+
# async def main():
|
167 |
+
# res = await extract_information_async(text)
|
168 |
+
# print(res)
|
169 |
+
|
170 |
+
# asyncio.run(main())
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
chainlit
|
2 |
+
langchain
|
3 |
+
tiktoken
|
4 |
+
openai
|
5 |
+
faiss-cpu
|
6 |
+
llama-index==0.9.19
|
7 |
+
llama-hub
|
8 |
+
unstructured
|
9 |
+
lxml
|
10 |
+
cohere
|
11 |
+
wandb
|
12 |
+
pydantic
|