Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import tempfile
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
from ultralytics import YOLO
|
8 |
+
import torch
|
9 |
+
from typing import Optional, Tuple, List
|
10 |
+
import logging
|
11 |
+
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
class DroneDetectionPipeline:
|
17 |
+
"""
|
18 |
+
Professional drone detection pipeline with YOLO + CSRT tracking
|
19 |
+
Designed for UK International Lab deployment
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, model_path: str = "best.pt"):
|
23 |
+
"""Initialize the detection pipeline with YOLO model and CSRT tracker"""
|
24 |
+
self.model_path = model_path
|
25 |
+
self.model = None
|
26 |
+
self.tracker = None
|
27 |
+
self.tracking_active = False
|
28 |
+
self.last_detection_bbox = None
|
29 |
+
self.confidence_threshold = 0.5
|
30 |
+
|
31 |
+
# Load model
|
32 |
+
self._load_model()
|
33 |
+
|
34 |
+
def _load_model(self) -> None:
|
35 |
+
"""Load YOLO model with error handling"""
|
36 |
+
try:
|
37 |
+
if os.path.exists(self.model_path):
|
38 |
+
self.model = YOLO(self.model_path)
|
39 |
+
logger.info(f"β
Model loaded successfully from {self.model_path}")
|
40 |
+
else:
|
41 |
+
logger.error(f"β Model file not found: {self.model_path}")
|
42 |
+
raise FileNotFoundError(f"Model file not found: {self.model_path}")
|
43 |
+
except Exception as e:
|
44 |
+
logger.error(f"β Error loading model: {str(e)}")
|
45 |
+
raise
|
46 |
+
|
47 |
+
def _initialize_tracker(self, frame: np.ndarray, bbox: Tuple[int, int, int, int]) -> bool:
|
48 |
+
"""Initialize CSRT tracker with given bounding box"""
|
49 |
+
try:
|
50 |
+
self.tracker = cv2.TrackerCSRT_create()
|
51 |
+
success = self.tracker.init(frame, bbox)
|
52 |
+
if success:
|
53 |
+
self.tracking_active = True
|
54 |
+
self.last_detection_bbox = bbox
|
55 |
+
logger.info("β
Tracker initialized successfully")
|
56 |
+
return success
|
57 |
+
except Exception as e:
|
58 |
+
logger.error(f"β Error initializing tracker: {str(e)}")
|
59 |
+
return False
|
60 |
+
|
61 |
+
def _detect_drones(self, frame: np.ndarray) -> List[Tuple[int, int, int, int, float]]:
|
62 |
+
"""Run YOLO inference on frame and return detections"""
|
63 |
+
try:
|
64 |
+
results = self.model(frame, verbose=False, conf=self.confidence_threshold)
|
65 |
+
detections = []
|
66 |
+
|
67 |
+
for result in results:
|
68 |
+
if result.boxes is not None:
|
69 |
+
for box in result.boxes:
|
70 |
+
# Extract coordinates and confidence
|
71 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy().astype(int)
|
72 |
+
confidence = float(box.conf[0].cpu().numpy())
|
73 |
+
detections.append((x1, y1, x2, y2, confidence))
|
74 |
+
|
75 |
+
return detections
|
76 |
+
except Exception as e:
|
77 |
+
logger.error(f"β Error in detection: {str(e)}")
|
78 |
+
return []
|
79 |
+
|
80 |
+
def _draw_detection(self, frame: np.ndarray, bbox: Tuple[int, int, int, int],
|
81 |
+
confidence: float = None, is_tracking: bool = False) -> np.ndarray:
|
82 |
+
"""Draw bounding box and label on frame"""
|
83 |
+
x1, y1, x2, y2 = bbox
|
84 |
+
|
85 |
+
# Choose color: Red for detection, Blue for tracking
|
86 |
+
color = (0, 0, 255) if not is_tracking else (255, 0, 0)
|
87 |
+
label_text = f"Drone (Det)" if not is_tracking else f"Drone (Track)"
|
88 |
+
|
89 |
+
if confidence is not None and not is_tracking:
|
90 |
+
label_text = f"Drone {confidence:.2f}"
|
91 |
+
|
92 |
+
# Draw bounding box
|
93 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
94 |
+
|
95 |
+
# Draw label background
|
96 |
+
label_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)[0]
|
97 |
+
cv2.rectangle(frame, (x1, y1 - label_size[1] - 10),
|
98 |
+
(x1 + label_size[0], y1), color, -1)
|
99 |
+
|
100 |
+
# Draw label text
|
101 |
+
cv2.putText(frame, label_text, (x1, y1 - 5),
|
102 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
103 |
+
|
104 |
+
return frame
|
105 |
+
|
106 |
+
def process_video(self, input_video_path: str, progress_callback=None) -> str:
|
107 |
+
"""
|
108 |
+
Process entire video with drone detection and tracking
|
109 |
+
|
110 |
+
Args:
|
111 |
+
input_video_path: Path to input video
|
112 |
+
progress_callback: Optional callback for progress updates
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
Path to processed output video
|
116 |
+
"""
|
117 |
+
# Create temporary output file
|
118 |
+
output_dir = tempfile.mkdtemp()
|
119 |
+
output_path = os.path.join(output_dir, "drone_detection_output.mp4")
|
120 |
+
|
121 |
+
cap = cv2.VideoCapture(input_video_path)
|
122 |
+
|
123 |
+
if not cap.isOpened():
|
124 |
+
raise ValueError("β Could not open input video")
|
125 |
+
|
126 |
+
# Get video properties
|
127 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
128 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
129 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
130 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
131 |
+
|
132 |
+
# Initialize video writer
|
133 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
134 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
135 |
+
|
136 |
+
frame_count = 0
|
137 |
+
detection_count = 0
|
138 |
+
tracking_count = 0
|
139 |
+
|
140 |
+
logger.info(f"π¬ Processing video: {total_frames} frames at {fps} FPS")
|
141 |
+
|
142 |
+
try:
|
143 |
+
while True:
|
144 |
+
ret, frame = cap.read()
|
145 |
+
if not ret:
|
146 |
+
break
|
147 |
+
|
148 |
+
frame_processed = frame.copy()
|
149 |
+
current_detections = self._detect_drones(frame)
|
150 |
+
|
151 |
+
if current_detections:
|
152 |
+
# We have detections - use the largest detection
|
153 |
+
largest_detection = max(current_detections,
|
154 |
+
key=lambda d: (d[2]-d[0]) * (d[3]-d[1]))
|
155 |
+
|
156 |
+
x1, y1, x2, y2, conf = largest_detection
|
157 |
+
detection_bbox = (x1, y1, x2-x1, y2-y1) # Convert to (x, y, w, h)
|
158 |
+
|
159 |
+
# Draw detection
|
160 |
+
frame_processed = self._draw_detection(frame_processed,
|
161 |
+
(x1, y1, x2, y2), conf, False)
|
162 |
+
|
163 |
+
# Reinitialize tracker with new detection
|
164 |
+
self._initialize_tracker(frame, detection_bbox)
|
165 |
+
detection_count += 1
|
166 |
+
|
167 |
+
elif self.tracking_active and self.tracker is not None:
|
168 |
+
# No detections but tracker is active
|
169 |
+
success, tracking_bbox = self.tracker.update(frame)
|
170 |
+
|
171 |
+
if success:
|
172 |
+
x, y, w, h = [int(v) for v in tracking_bbox]
|
173 |
+
self.last_detection_bbox = tracking_bbox
|
174 |
+
|
175 |
+
# Draw tracking box
|
176 |
+
frame_processed = self._draw_detection(frame_processed,
|
177 |
+
(x, y, x+w, y+h), None, True)
|
178 |
+
tracking_count += 1
|
179 |
+
else:
|
180 |
+
# Tracking failed
|
181 |
+
if self.last_detection_bbox is not None:
|
182 |
+
# Use last known position
|
183 |
+
x, y, w, h = [int(v) for v in self.last_detection_bbox]
|
184 |
+
frame_processed = self._draw_detection(frame_processed,
|
185 |
+
(x, y, x+w, y+h), None, True)
|
186 |
+
self.tracking_active = False
|
187 |
+
|
188 |
+
# Write processed frame
|
189 |
+
out.write(frame_processed)
|
190 |
+
frame_count += 1
|
191 |
+
|
192 |
+
# Update progress
|
193 |
+
if progress_callback and frame_count % 10 == 0:
|
194 |
+
progress = frame_count / total_frames
|
195 |
+
progress_callback(progress, f"Processing frame {frame_count}/{total_frames}")
|
196 |
+
|
197 |
+
except Exception as e:
|
198 |
+
logger.error(f"β Error during video processing: {str(e)}")
|
199 |
+
raise
|
200 |
+
finally:
|
201 |
+
cap.release()
|
202 |
+
out.release()
|
203 |
+
|
204 |
+
logger.info(f"β
Processing completed!")
|
205 |
+
logger.info(f"π Stats: {detection_count} detections, {tracking_count} tracking frames")
|
206 |
+
|
207 |
+
return output_path
|
208 |
+
|
209 |
+
# Initialize pipeline
|
210 |
+
pipeline = DroneDetectionPipeline()
|
211 |
+
|
212 |
+
def process_video_gradio(input_video, confidence_threshold):
|
213 |
+
"""Gradio interface function"""
|
214 |
+
if input_video is None:
|
215 |
+
return None, "β Please upload a video file"
|
216 |
+
|
217 |
+
try:
|
218 |
+
# Update confidence threshold
|
219 |
+
pipeline.confidence_threshold = confidence_threshold
|
220 |
+
|
221 |
+
# Process video
|
222 |
+
output_path = pipeline.process_video(input_video)
|
223 |
+
|
224 |
+
return output_path, "β
Video processing completed successfully!"
|
225 |
+
|
226 |
+
except Exception as e:
|
227 |
+
error_msg = f"β Error processing video: {str(e)}"
|
228 |
+
logger.error(error_msg)
|
229 |
+
return None, error_msg
|
230 |
+
|
231 |
+
# Gradio Interface
|
232 |
+
def create_interface():
|
233 |
+
"""Create professional Gradio interface"""
|
234 |
+
|
235 |
+
title = "π Professional Drone Detection System"
|
236 |
+
description = """
|
237 |
+
**Advanced Drone Detection and Tracking Pipeline**
|
238 |
+
|
239 |
+
This system uses state-of-the-art YOLO object detection combined with CSRT tracking for robust drone detection in video footage.
|
240 |
+
|
241 |
+
**Features:**
|
242 |
+
- Real-time drone detection with confidence scoring
|
243 |
+
- Seamless tracking when detections are lost
|
244 |
+
- Professional-grade output for research and analysis
|
245 |
+
|
246 |
+
**Developed for UK International Lab**
|
247 |
+
"""
|
248 |
+
|
249 |
+
article = """
|
250 |
+
### Technical Details
|
251 |
+
- **Detection Model**: Custom trained YOLO model optimized for drone detection
|
252 |
+
- **Tracking Algorithm**: CSRT (Channel and Spatial Reliability Tracker)
|
253 |
+
- **Output Format**: MP4 video with annotated detections and tracking
|
254 |
+
|
255 |
+
### Usage Instructions
|
256 |
+
1. Upload your video file (supported formats: MP4, AVI, MOV)
|
257 |
+
2. Adjust confidence threshold if needed (0.1-0.9)
|
258 |
+
3. Click "Process Video" and wait for completion
|
259 |
+
4. Download the processed video with drone annotations
|
260 |
+
|
261 |
+
**Note**: Processing time depends on video length and resolution.
|
262 |
+
"""
|
263 |
+
|
264 |
+
with gr.Blocks(theme=gr.themes.Soft(), title=title) as interface:
|
265 |
+
gr.Markdown(f"# {title}")
|
266 |
+
gr.Markdown(description)
|
267 |
+
|
268 |
+
with gr.Row():
|
269 |
+
with gr.Column():
|
270 |
+
input_video = gr.Video(
|
271 |
+
label="πΉ Upload Video",
|
272 |
+
format="mp4"
|
273 |
+
)
|
274 |
+
confidence_slider = gr.Slider(
|
275 |
+
minimum=0.1,
|
276 |
+
maximum=0.9,
|
277 |
+
value=0.5,
|
278 |
+
step=0.1,
|
279 |
+
label="π― Detection Confidence Threshold"
|
280 |
+
)
|
281 |
+
process_btn = gr.Button(
|
282 |
+
"π Process Video",
|
283 |
+
variant="primary",
|
284 |
+
size="lg"
|
285 |
+
)
|
286 |
+
|
287 |
+
with gr.Column():
|
288 |
+
output_video = gr.Video(
|
289 |
+
label="π½οΈ Processed Video",
|
290 |
+
format="mp4"
|
291 |
+
)
|
292 |
+
status_text = gr.Textbox(
|
293 |
+
label="π Processing Status",
|
294 |
+
interactive=False
|
295 |
+
)
|
296 |
+
|
297 |
+
process_btn.click(
|
298 |
+
fn=process_video_gradio,
|
299 |
+
inputs=[input_video, confidence_slider],
|
300 |
+
outputs=[output_video, status_text],
|
301 |
+
show_progress=True
|
302 |
+
)
|
303 |
+
|
304 |
+
gr.Markdown(article)
|
305 |
+
|
306 |
+
# Example section
|
307 |
+
gr.Markdown("### π System Requirements")
|
308 |
+
gr.Markdown("""
|
309 |
+
- Input video formats: MP4, AVI, MOV, MKV
|
310 |
+
- Maximum file size: 200MB
|
311 |
+
- Recommended resolution: Up to 1920x1080
|
312 |
+
- Processing time: ~1-2 minutes per minute of video
|
313 |
+
""")
|
314 |
+
|
315 |
+
return interface
|
316 |
+
|
317 |
+
# Launch the application
|
318 |
+
if __name__ == "__main__":
|
319 |
+
interface = create_interface()
|
320 |
+
interface.launch(
|
321 |
+
server_name="0.0.0.0",
|
322 |
+
server_port=7860,
|
323 |
+
share=False,
|
324 |
+
show_error=True,
|
325 |
+
quiet=False
|
326 |
+
)
|