Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- .gitattributes +35 -35
- .gitignore +1 -0
- GMM.py +672 -0
- README.md +12 -12
- app.py +115 -0
- gmm_model.joblib +3 -0
- requirements.txt +10 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,35 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
venv/
|
GMM.py
ADDED
|
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2 as cv
|
| 3 |
+
import os
|
| 4 |
+
from numpy.linalg import norm, inv
|
| 5 |
+
from scipy.stats import multivariate_normal as mv_norm
|
| 6 |
+
import joblib # or import pickle
|
| 7 |
+
import os
|
| 8 |
+
import torch
|
| 9 |
+
from torch.distributions import MultivariateNormal
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
init_weight = [0.7, 0.11, 0.1, 0.09]
|
| 12 |
+
init_u = np.zeros(3)
|
| 13 |
+
# initial Covariance matrix
|
| 14 |
+
init_sigma = 225*np.eye(3)
|
| 15 |
+
init_alpha = 0.05
|
| 16 |
+
|
| 17 |
+
class GMM():
|
| 18 |
+
def __init__(self, data_dir, train_num, alpha=init_alpha):
|
| 19 |
+
self.data_dir = data_dir
|
| 20 |
+
self.train_num = train_num
|
| 21 |
+
self.alpha = alpha
|
| 22 |
+
self.img_shape = None
|
| 23 |
+
|
| 24 |
+
self.weight = None
|
| 25 |
+
self.mu = None
|
| 26 |
+
self.sigma = None
|
| 27 |
+
self.K = None
|
| 28 |
+
self.B = None
|
| 29 |
+
|
| 30 |
+
def check(self, pixel, mu, sigma):
|
| 31 |
+
'''
|
| 32 |
+
Check whether a pixel matches a Gaussian distribution.
|
| 33 |
+
Matching means the Mahalanobis distance is less than 2.5.
|
| 34 |
+
'''
|
| 35 |
+
# Convert to torch tensors on same device
|
| 36 |
+
if isinstance(mu, np.ndarray):
|
| 37 |
+
mu = torch.from_numpy(mu).float()
|
| 38 |
+
if isinstance(sigma, np.ndarray):
|
| 39 |
+
sigma = torch.from_numpy(sigma).float()
|
| 40 |
+
if isinstance(pixel, np.ndarray):
|
| 41 |
+
pixel = torch.from_numpy(pixel).float()
|
| 42 |
+
|
| 43 |
+
# Ensure all are on the same device
|
| 44 |
+
device = mu.device
|
| 45 |
+
pixel = pixel.to(device)
|
| 46 |
+
sigma = sigma.to(device)
|
| 47 |
+
|
| 48 |
+
# Compute Mahalanobis distance
|
| 49 |
+
delta = pixel - mu
|
| 50 |
+
sigma_inv = torch.linalg.inv(sigma)
|
| 51 |
+
d_squared = delta @ sigma_inv @ delta
|
| 52 |
+
d = torch.sqrt(d_squared + 1e-5)
|
| 53 |
+
|
| 54 |
+
return d.item() < 0.1
|
| 55 |
+
|
| 56 |
+
# def train(self, K=4):
|
| 57 |
+
# '''
|
| 58 |
+
# train model
|
| 59 |
+
# '''
|
| 60 |
+
# self.K = K
|
| 61 |
+
# file_list = []
|
| 62 |
+
# # file numbers are from 1 to train_number
|
| 63 |
+
# for i in range(self.train_num):
|
| 64 |
+
# file_name = os.path.join(self.data_dir, 'b%05d' % i + '.bmp')
|
| 65 |
+
# file_list.append(file_name)
|
| 66 |
+
|
| 67 |
+
# img_init = cv.imread(file_list[0])
|
| 68 |
+
# img_shape = img_init.shape
|
| 69 |
+
# self.img_shape = img_shape
|
| 70 |
+
# self.weight = np.array([[init_weight for j in range(self.img_shape[1])] for i in range(self.img_shape[0])])
|
| 71 |
+
# self.mu = np.array([[[init_u for k in range(self.K)] for j in range(img_shape[1])]
|
| 72 |
+
# for i in range(img_shape[0])])
|
| 73 |
+
# self.sigma = np.array([[[init_sigma for k in range(self.K)] for j in range(img_shape[1])]
|
| 74 |
+
# for i in range(img_shape[0])])
|
| 75 |
+
|
| 76 |
+
# self.B = np.ones(self.img_shape[0:2], dtype=int)
|
| 77 |
+
# for i in range(img_shape[0]):
|
| 78 |
+
# for j in range(img_shape[1]):
|
| 79 |
+
# for k in range(self.K):
|
| 80 |
+
# self.mu[i][j][k] = np.array(img_init[i][j]).reshape(1,3)
|
| 81 |
+
# for i in range(self.K):
|
| 82 |
+
# print('u:{}'.format(self.mu[100][100][i]))
|
| 83 |
+
# # update process
|
| 84 |
+
# for file in file_list:
|
| 85 |
+
# print('training:{}'.format(file))
|
| 86 |
+
# img=cv.imread(file)
|
| 87 |
+
# for i in range(img.shape[0]):
|
| 88 |
+
# for j in range(img.shape[1]):
|
| 89 |
+
# # Check whether match the existing K Gaussian distributions
|
| 90 |
+
# match = -1
|
| 91 |
+
# for k in range(K):
|
| 92 |
+
# if self.check(img[i][j], self.mu[i][j][k], self.sigma[i][j][k]):
|
| 93 |
+
# match = k
|
| 94 |
+
# break
|
| 95 |
+
# # a match found
|
| 96 |
+
# if match != -1:
|
| 97 |
+
# mu = self.mu[i][j][k]
|
| 98 |
+
# sigma = self.sigma[i][j][k]
|
| 99 |
+
# x = img[i][j].astype(float)
|
| 100 |
+
# delta = x - mu
|
| 101 |
+
# rho = self.alpha * mv_norm.pdf(img[i][j], mu, sigma)
|
| 102 |
+
# self.weight[i][j] = (1 - self.alpha) * self.weight[i][j]
|
| 103 |
+
# self.weight[i][j][match] += self.alpha
|
| 104 |
+
# # self.weight[i][j][k] = self.weight[i][j][k] + self.alpha*(m - self.weight[i][j][k])
|
| 105 |
+
# self.mu[i][j][k] = mu + rho * delta
|
| 106 |
+
# self.sigma[i][j][k] = sigma + rho * (np.matmul(delta, delta.T) - sigma)
|
| 107 |
+
# # if none of the K distributions match the current value
|
| 108 |
+
# # the least probable distribution is replaced with a distribution
|
| 109 |
+
# # with current value as its mean, an initially high variance and low rior weight
|
| 110 |
+
# if match == -1:
|
| 111 |
+
# w_list = [self.weight[i][j][k] for k in range(K)]
|
| 112 |
+
# id = w_list.index(min(w_list))
|
| 113 |
+
# # weight keep same, replace mean with current value and set high variance
|
| 114 |
+
# self.mu[i][j][id] = np.array(img[i][j]).reshape(1, 3)
|
| 115 |
+
# self.sigma[i][j][id] = np.array(init_sigma)
|
| 116 |
+
# print('img:{}'.format(img[100][100]))
|
| 117 |
+
# print('weight:{}'.format(self.weight[100][100]))
|
| 118 |
+
# self.reorder()
|
| 119 |
+
# for i in range(self.K):
|
| 120 |
+
# print('u:{}'.format(self.mu[100][100][i]))
|
| 121 |
+
|
| 122 |
+
def train(self, K=4):
|
| 123 |
+
'''
|
| 124 |
+
train model with GPU acceleration
|
| 125 |
+
'''
|
| 126 |
+
self.K = K
|
| 127 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 128 |
+
print(f"Using device: {device}")
|
| 129 |
+
|
| 130 |
+
file_list = []
|
| 131 |
+
for i in range(self.train_num):
|
| 132 |
+
file_name = os.path.join(self.data_dir, 'b%05d' % i + '.bmp')
|
| 133 |
+
file_list.append(file_name)
|
| 134 |
+
|
| 135 |
+
# Initialize with first image
|
| 136 |
+
img_init = cv.imread(file_list[0])
|
| 137 |
+
img_shape = img_shape = img_init.shape
|
| 138 |
+
self.img_shape = img_shape
|
| 139 |
+
height, width, channels = img_shape
|
| 140 |
+
|
| 141 |
+
# Initialize model parameters on GPU
|
| 142 |
+
self.weight = torch.full((height, width, K), 1.0/K,
|
| 143 |
+
dtype=torch.float32, device=device)
|
| 144 |
+
self.mu = torch.zeros(height, width, K, 3,
|
| 145 |
+
dtype=torch.float32, device=device)
|
| 146 |
+
self.sigma = torch.zeros(height, width, K, 3, 3,
|
| 147 |
+
dtype=torch.float32, device=device)
|
| 148 |
+
self.B = torch.ones((height, width),
|
| 149 |
+
dtype=torch.int32, device=device)
|
| 150 |
+
|
| 151 |
+
# Initialize mu with first image values
|
| 152 |
+
img_tensor = torch.from_numpy(img_init).float().to(device)
|
| 153 |
+
for k in range(K):
|
| 154 |
+
self.mu[:, :, k, :] = img_tensor
|
| 155 |
+
|
| 156 |
+
# Initialize sigma with identity matrix * 225
|
| 157 |
+
self.sigma[:] = torch.eye(3, device=device) * 225
|
| 158 |
+
|
| 159 |
+
# Training loop
|
| 160 |
+
for file in file_list:
|
| 161 |
+
print('training:{}'.format(file))
|
| 162 |
+
img = cv.imread(file)
|
| 163 |
+
img_tensor = torch.from_numpy(img).float().to(device) # (H,W,3)
|
| 164 |
+
|
| 165 |
+
# Check matches for all pixels
|
| 166 |
+
matches = torch.full((height, width), -1, dtype=torch.long, device=device)
|
| 167 |
+
|
| 168 |
+
for k in range(K):
|
| 169 |
+
# Calculate Mahalanobis distance for each distribution
|
| 170 |
+
delta = img_tensor.unsqueeze(2) - self.mu # (H,W,K,3)
|
| 171 |
+
sigma_inv = torch.linalg.inv(self.sigma) # (H,W,K,3,3)
|
| 172 |
+
|
| 173 |
+
# Compute (x-μ)T Σ^-1 (x-μ)
|
| 174 |
+
temp = torch.einsum('hwki,hwkij->hwkj', delta, sigma_inv)
|
| 175 |
+
mahalanobis = torch.sqrt(torch.einsum('hwki,hwki->hwk', temp, delta))
|
| 176 |
+
|
| 177 |
+
# Update matches where distance < 2.5 and not already matched
|
| 178 |
+
match_mask = (mahalanobis[:,:,k] < 2.5) & (matches == -1)
|
| 179 |
+
matches[match_mask] = k
|
| 180 |
+
|
| 181 |
+
# Process matched pixels
|
| 182 |
+
for k in range(K):
|
| 183 |
+
# Get mask for current distribution matches
|
| 184 |
+
mask = matches == k
|
| 185 |
+
if mask.any():
|
| 186 |
+
# Get matched pixels
|
| 187 |
+
matched_pixels = img_tensor[mask] # (N,3)
|
| 188 |
+
matched_mu = self.mu[:,:,k,:][mask] # (N,3)
|
| 189 |
+
matched_sigma = self.sigma[:,:,k,:,:][mask] # (N,3,3)
|
| 190 |
+
|
| 191 |
+
try:
|
| 192 |
+
# Create multivariate normal distribution
|
| 193 |
+
mvn = MultivariateNormal(matched_mu,
|
| 194 |
+
covariance_matrix=matched_sigma)
|
| 195 |
+
|
| 196 |
+
# Calculate rho
|
| 197 |
+
rho = self.alpha * torch.exp(mvn.log_prob(matched_pixels))
|
| 198 |
+
|
| 199 |
+
# Update weights
|
| 200 |
+
self.weight[:,:,k][mask] = (1 - self.alpha) * self.weight[:,:,k][mask] + self.alpha
|
| 201 |
+
|
| 202 |
+
# Update mu
|
| 203 |
+
delta = matched_pixels - matched_mu
|
| 204 |
+
self.mu[:,:,k,:][mask] += rho.unsqueeze(1) * delta
|
| 205 |
+
|
| 206 |
+
# Update sigma
|
| 207 |
+
delta_outer = torch.einsum('bi,bj->bij', delta, delta)
|
| 208 |
+
sigma_update = rho.unsqueeze(1).unsqueeze(2) * (delta_outer - matched_sigma)
|
| 209 |
+
self.sigma[:,:,k,:,:][mask] += sigma_update
|
| 210 |
+
|
| 211 |
+
except RuntimeError as e:
|
| 212 |
+
print(f"Error updating distribution {k}: {e}")
|
| 213 |
+
continue
|
| 214 |
+
|
| 215 |
+
# Process non-matched pixels
|
| 216 |
+
non_matched = matches == -1
|
| 217 |
+
if non_matched.any():
|
| 218 |
+
# Find least probable distribution for each non-matched pixel
|
| 219 |
+
weight_non_matched = self.weight[non_matched] # shape: (N, K)
|
| 220 |
+
min_weight_idx = torch.argmin(weight_non_matched, dim=1) # shape: (N,)
|
| 221 |
+
|
| 222 |
+
# Create flat indices of non-matched pixels
|
| 223 |
+
non_matched_indices = non_matched.nonzero(as_tuple=False) # shape: (N, 2)
|
| 224 |
+
|
| 225 |
+
for k in range(K):
|
| 226 |
+
# Find positions where min_weight_idx == k
|
| 227 |
+
k_mask = (min_weight_idx == k)
|
| 228 |
+
if k_mask.any():
|
| 229 |
+
selected_indices = non_matched_indices[k_mask] # shape: (M, 2)
|
| 230 |
+
y_idx = selected_indices[:, 0]
|
| 231 |
+
x_idx = selected_indices[:, 1]
|
| 232 |
+
|
| 233 |
+
# Update mu and sigma
|
| 234 |
+
self.mu[y_idx, x_idx, k, :] = img_tensor[y_idx, x_idx]
|
| 235 |
+
self.sigma[y_idx, x_idx, k, :, :] = torch.eye(3, device=device) * 225
|
| 236 |
+
|
| 237 |
+
# Convert to numpy for reordering and debug prints
|
| 238 |
+
weight_np = self.weight.cpu().numpy()
|
| 239 |
+
mu_np = self.mu.cpu().numpy()
|
| 240 |
+
sigma_np = self.sigma.cpu().numpy()
|
| 241 |
+
B_np = self.B.cpu().numpy()
|
| 242 |
+
|
| 243 |
+
print('img:{}'.format(img[100][100]))
|
| 244 |
+
print('weight:{}'.format(weight_np[100][100]))
|
| 245 |
+
|
| 246 |
+
# Update numpy arrays for reorder
|
| 247 |
+
self.weight = weight_np
|
| 248 |
+
self.mu = mu_np
|
| 249 |
+
self.sigma = sigma_np
|
| 250 |
+
self.B = B_np
|
| 251 |
+
|
| 252 |
+
self.reorder()
|
| 253 |
+
for i in range(self.K):
|
| 254 |
+
print('u:{}'.format(self.mu[100][100][i]))
|
| 255 |
+
|
| 256 |
+
# Move back to GPU for next iteration
|
| 257 |
+
self.weight = torch.from_numpy(self.weight).to(device)
|
| 258 |
+
self.mu = torch.from_numpy(self.mu).to(device)
|
| 259 |
+
self.sigma = torch.from_numpy(self.sigma).to(device)
|
| 260 |
+
self.B = torch.from_numpy(self.B).to(device)
|
| 261 |
+
|
| 262 |
+
def save_model(self, file_path):
|
| 263 |
+
"""
|
| 264 |
+
Save the trained model to a file
|
| 265 |
+
"""
|
| 266 |
+
# Only make directories if there is a directory in the path
|
| 267 |
+
dir_name = os.path.dirname(file_path)
|
| 268 |
+
if dir_name:
|
| 269 |
+
os.makedirs(dir_name, exist_ok=True)
|
| 270 |
+
|
| 271 |
+
joblib.dump({
|
| 272 |
+
'weight': self.weight,
|
| 273 |
+
'mu': self.mu,
|
| 274 |
+
'sigma': self.sigma,
|
| 275 |
+
'K': self.K,
|
| 276 |
+
'B': self.B,
|
| 277 |
+
'img_shape': self.img_shape,
|
| 278 |
+
'alpha': self.alpha,
|
| 279 |
+
'data_dir': self.data_dir,
|
| 280 |
+
'train_num': self.train_num
|
| 281 |
+
}, file_path)
|
| 282 |
+
|
| 283 |
+
print(f"Model saved to {file_path}")
|
| 284 |
+
|
| 285 |
+
@classmethod
|
| 286 |
+
def load_model(cls, file_path):
|
| 287 |
+
"""
|
| 288 |
+
Load a trained model from file
|
| 289 |
+
"""
|
| 290 |
+
data = joblib.load(file_path)
|
| 291 |
+
|
| 292 |
+
# Create new instance
|
| 293 |
+
gmm = cls(data['data_dir'], data['train_num'], data['alpha'])
|
| 294 |
+
|
| 295 |
+
# Restore all attributes
|
| 296 |
+
gmm.weight = data['weight']
|
| 297 |
+
gmm.mu = data['mu']
|
| 298 |
+
gmm.sigma = data['sigma']
|
| 299 |
+
gmm.K = data['K']
|
| 300 |
+
gmm.B = data['B']
|
| 301 |
+
gmm.img_shape = data['img_shape']
|
| 302 |
+
gmm.image_shape = data['img_shape']
|
| 303 |
+
|
| 304 |
+
print(f"Model loaded from {file_path}")
|
| 305 |
+
return gmm
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def reorder(self, T=0.90):
|
| 309 |
+
'''
|
| 310 |
+
Reorder the estimated components based on the ratio pi / the norm of standard deviation.
|
| 311 |
+
The first B components are chosen as background components.
|
| 312 |
+
The default threshold is 0.90.
|
| 313 |
+
'''
|
| 314 |
+
epsilon = 1e-6 # to prevent divide-by-zero
|
| 315 |
+
|
| 316 |
+
for i in range(self.img_shape[0]):
|
| 317 |
+
for j in range(self.img_shape[1]):
|
| 318 |
+
k_weight = self.weight[i][j]
|
| 319 |
+
k_norm = []
|
| 320 |
+
|
| 321 |
+
for k in range(self.K):
|
| 322 |
+
cov = self.sigma[i][j][k]
|
| 323 |
+
try:
|
| 324 |
+
if np.all(np.linalg.eigvals(cov) >= 0):
|
| 325 |
+
stddev = np.sqrt(cov)
|
| 326 |
+
k_norm.append(norm(stddev))
|
| 327 |
+
else:
|
| 328 |
+
k_norm.append(epsilon)
|
| 329 |
+
except:
|
| 330 |
+
k_norm.append(epsilon)
|
| 331 |
+
|
| 332 |
+
k_norm = np.array(k_norm)
|
| 333 |
+
ratio = k_weight / (k_norm + epsilon)
|
| 334 |
+
descending_order = np.argsort(-ratio)
|
| 335 |
+
|
| 336 |
+
self.weight[i][j] = self.weight[i][j][descending_order]
|
| 337 |
+
self.mu[i][j] = self.mu[i][j][descending_order]
|
| 338 |
+
self.sigma[i][j] = self.sigma[i][j][descending_order]
|
| 339 |
+
|
| 340 |
+
cum_weight = 0
|
| 341 |
+
for index, order in enumerate(descending_order):
|
| 342 |
+
cum_weight += self.weight[i][j][index]
|
| 343 |
+
if cum_weight > T:
|
| 344 |
+
self.B[i][j] = index + 1
|
| 345 |
+
break
|
| 346 |
+
|
| 347 |
+
# def infer(self, img, heatmap=None, alpha=0.1):
|
| 348 |
+
# '''
|
| 349 |
+
# Perform inference with a persistent heatmap that intensifies with movement.
|
| 350 |
+
# '''
|
| 351 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 352 |
+
# img_tensor = torch.from_numpy(img).float().to(device) # (H, W, 3)
|
| 353 |
+
|
| 354 |
+
# H, W, _ = img.shape
|
| 355 |
+
|
| 356 |
+
# # Initialize heatmap on the first frame
|
| 357 |
+
# if heatmap is None:
|
| 358 |
+
# heatmap = torch.zeros((H, W), dtype=torch.float32, device=device)
|
| 359 |
+
# # No need for an 'else' that converts from numpy,
|
| 360 |
+
# # as we will pass the tensor back in subsequent calls.
|
| 361 |
+
|
| 362 |
+
# # --- Your existing foreground detection logic remains the same ---
|
| 363 |
+
# detection_mask = torch.ones((H, W), dtype=torch.bool, device=device)
|
| 364 |
+
# for k in range(self.K):
|
| 365 |
+
# B_mask = (self.B >= (k + 1)).to(device)
|
| 366 |
+
# mu_k = self.mu[:, :, k, :].to(device)
|
| 367 |
+
# sigma_k = self.sigma[:, :, k, :, :].to(device)
|
| 368 |
+
# delta = (img_tensor - mu_k).unsqueeze(-1)
|
| 369 |
+
# sigma_inv = torch.linalg.inv(sigma_k)
|
| 370 |
+
# temp = torch.matmul(sigma_inv, delta)
|
| 371 |
+
# dist_sq = torch.matmul(delta.transpose(-2, -1), temp).squeeze(-1).squeeze(-1)
|
| 372 |
+
# dist = torch.sqrt(dist_sq + 1e-5)
|
| 373 |
+
# match_mask = (dist < 9.5) & B_mask
|
| 374 |
+
# detection_mask[match_mask] = False
|
| 375 |
+
# img_tensor[match_mask] = mu_k[match_mask] # Optional: for visualization
|
| 376 |
+
|
| 377 |
+
# foreground_mask = detection_mask & (img_tensor.abs().sum(dim=-1) > 0)
|
| 378 |
+
# heatmap[foreground_mask] = torch.clamp(heatmap[foreground_mask] + alpha, 0, 1)
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
# # Convert heatmap tensor to a numpy array for visualization
|
| 382 |
+
# heatmap_np = heatmap.cpu().numpy()
|
| 383 |
+
|
| 384 |
+
# # Apply the colormap (0 -> Blue, 1 -> Red)
|
| 385 |
+
# heatmap_viz = cv.applyColorMap((heatmap_np * 255).astype(np.uint8), cv.COLORMAP_JET)
|
| 386 |
+
|
| 387 |
+
# # Blend the heatmap with the original image
|
| 388 |
+
# result = cv.addWeighted(img, 0.7, heatmap_viz, 0.5, 0)
|
| 389 |
+
|
| 390 |
+
# # Return the blended image and the heatmap tensor for the next frame
|
| 391 |
+
# return result, heatmap
|
| 392 |
+
#--------------------------------------------------------------------------------------------
|
| 393 |
+
# def infer(self, img, heatmap=None, decay_factor=0.95, alpha=0.1):
|
| 394 |
+
# '''
|
| 395 |
+
# Perform inference with improved heatmap reflecting persistence of foreground objects.
|
| 396 |
+
# Default areas remain unchanged (no bluish tone), only heatmap areas are colored.
|
| 397 |
+
# '''
|
| 398 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 399 |
+
# img_tensor = torch.from_numpy(img).float().to(device) # (H, W, 3)
|
| 400 |
+
|
| 401 |
+
# H, W, _ = img.shape
|
| 402 |
+
|
| 403 |
+
# # Initialize or move heatmap to tensor on device
|
| 404 |
+
# if heatmap is None:
|
| 405 |
+
# heatmap = torch.zeros((H, W), dtype=torch.float32, device=device)
|
| 406 |
+
# else:
|
| 407 |
+
# heatmap = torch.from_numpy(heatmap).float().to(device)
|
| 408 |
+
|
| 409 |
+
# # Detection mask initialized to 1 (foreground), 0 means background
|
| 410 |
+
# detection_mask = torch.ones((H, W), dtype=torch.bool, device=device)
|
| 411 |
+
|
| 412 |
+
# for k in range(self.K):
|
| 413 |
+
# B_mask = (self.B >= (k + 1)).to(device)
|
| 414 |
+
|
| 415 |
+
# mu_k = self.mu[:, :, k, :].to(device)
|
| 416 |
+
# sigma_k = self.sigma[:, :, k, :, :].to(device)
|
| 417 |
+
|
| 418 |
+
# delta = img_tensor - mu_k
|
| 419 |
+
# delta = delta.unsqueeze(-1)
|
| 420 |
+
|
| 421 |
+
# sigma_inv = torch.linalg.inv(sigma_k)
|
| 422 |
+
|
| 423 |
+
# temp = torch.matmul(sigma_inv, delta)
|
| 424 |
+
# dist_sq = torch.matmul(delta.transpose(-2, -1), temp).squeeze(-1).squeeze(-1)
|
| 425 |
+
# dist = torch.sqrt(dist_sq + 1e-5)
|
| 426 |
+
|
| 427 |
+
# match_mask = (dist < 9.5) & B_mask
|
| 428 |
+
|
| 429 |
+
# # Mark matched pixels as background
|
| 430 |
+
# detection_mask[match_mask] = False
|
| 431 |
+
|
| 432 |
+
# img_tensor[match_mask] = mu_k[match_mask]
|
| 433 |
+
|
| 434 |
+
# # Foreground mask (boolean tensor)
|
| 435 |
+
# foreground_mask = detection_mask & (img_tensor.abs().sum(dim=-1) > 0)
|
| 436 |
+
|
| 437 |
+
# # Update heatmap:
|
| 438 |
+
# heatmap[foreground_mask] = torch.clamp(heatmap[foreground_mask] + alpha, 0, 1)
|
| 439 |
+
# heatmap[~foreground_mask] *= decay_factor
|
| 440 |
+
|
| 441 |
+
# # Convert heatmap to numpy for visualization
|
| 442 |
+
# heatmap_np = heatmap.cpu().numpy()
|
| 443 |
+
|
| 444 |
+
# # Create heatmap visualization
|
| 445 |
+
# heatmap_viz = cv.applyColorMap((heatmap_np * 255).astype(np.uint8), cv.COLORMAP_JET)
|
| 446 |
+
|
| 447 |
+
# # Create mask of significant heatmap areas (adjust threshold as needed)
|
| 448 |
+
# significant_heat = (heatmap_np > 0.1)
|
| 449 |
+
|
| 450 |
+
# # Initialize result with original image
|
| 451 |
+
# result = img.copy()
|
| 452 |
+
|
| 453 |
+
# # Only process if there are significant heat areas
|
| 454 |
+
# if np.any(significant_heat):
|
| 455 |
+
# # Ensure we have valid regions to blend
|
| 456 |
+
# img_region = img[significant_heat]
|
| 457 |
+
# heat_region = heatmap_viz[significant_heat]
|
| 458 |
+
|
| 459 |
+
# # Only blend if we have valid regions
|
| 460 |
+
# if img_region.size > 0 and heat_region.size > 0:
|
| 461 |
+
# blended = cv.addWeighted(
|
| 462 |
+
# img_region, 0.7,
|
| 463 |
+
# heat_region, 0.3,
|
| 464 |
+
# 0
|
| 465 |
+
# )
|
| 466 |
+
# result[significant_heat] = blended
|
| 467 |
+
|
| 468 |
+
# return result, heatmap_np
|
| 469 |
+
#_____________________________________________________________________________________Decay factor and working good
|
| 470 |
+
# def infer(self, img, heatmap=None, decay_factor=0.95, alpha=0.1):
|
| 471 |
+
# '''
|
| 472 |
+
# Perform inference with binary red mask (no intensity variation) and dilation.
|
| 473 |
+
# Returns:
|
| 474 |
+
# - result: Image with solid red overlay on detections (same dtype as input)
|
| 475 |
+
# - heatmap_np: Heatmap array
|
| 476 |
+
# '''
|
| 477 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 478 |
+
|
| 479 |
+
# # Ensure input is numpy array and get original dtype
|
| 480 |
+
# original_dtype = img.dtype
|
| 481 |
+
# img = np.asarray(img).astype(np.float32)
|
| 482 |
+
# H, W, C = img.shape
|
| 483 |
+
|
| 484 |
+
# # Initialize tensors
|
| 485 |
+
# img_tensor = torch.from_numpy(img).float().to(device)
|
| 486 |
+
|
| 487 |
+
# # Initialize heatmap
|
| 488 |
+
# if heatmap is None:
|
| 489 |
+
# heatmap = torch.zeros((H, W), dtype=torch.float32, device=device)
|
| 490 |
+
# else:
|
| 491 |
+
# heatmap = torch.from_numpy(heatmap).float().to(device)
|
| 492 |
+
|
| 493 |
+
# # Detection processing (your original code)
|
| 494 |
+
# detection_mask = torch.ones((H, W), dtype=torch.bool, device=device)
|
| 495 |
+
|
| 496 |
+
# for k in range(self.K):
|
| 497 |
+
# B_mask = (self.B >= (k + 1)).to(device)
|
| 498 |
+
# mu_k = self.mu[:, :, k, :].to(device)
|
| 499 |
+
# sigma_k = self.sigma[:, :, k, :, :].to(device)
|
| 500 |
+
|
| 501 |
+
# delta = img_tensor - mu_k
|
| 502 |
+
# delta = delta.unsqueeze(-1)
|
| 503 |
+
# sigma_inv = torch.linalg.inv(sigma_k)
|
| 504 |
+
# temp = torch.matmul(sigma_inv, delta)
|
| 505 |
+
# dist_sq = torch.matmul(delta.transpose(-2, -1), temp).squeeze(-1).squeeze(-1)
|
| 506 |
+
# dist = torch.sqrt(dist_sq + 1e-5)
|
| 507 |
+
# match_mask = (dist < 9.5) & B_mask
|
| 508 |
+
# detection_mask[match_mask] = False
|
| 509 |
+
# img_tensor[match_mask] = mu_k[match_mask]
|
| 510 |
+
|
| 511 |
+
# # Update heatmap
|
| 512 |
+
# foreground_mask = detection_mask & (img_tensor.abs().sum(dim=-1) > 0)
|
| 513 |
+
# heatmap[foreground_mask] = torch.clamp(heatmap[foreground_mask] + alpha, 0, 1)
|
| 514 |
+
# heatmap[~foreground_mask] *= decay_factor
|
| 515 |
+
# heatmap_np = heatmap.cpu().numpy()
|
| 516 |
+
|
| 517 |
+
# # Create binary mask and dilate
|
| 518 |
+
# binary_mask = (heatmap_np > 0.1).astype(np.uint8)
|
| 519 |
+
# kernel = np.ones((5,5), np.uint8)
|
| 520 |
+
# dilated_mask = cv.dilate(binary_mask, kernel, iterations=1)
|
| 521 |
+
|
| 522 |
+
# # Create solid red overlay (BGR)
|
| 523 |
+
# red_overlay = np.zeros_like(img)
|
| 524 |
+
# red_overlay[..., 2] = 200 # Red channel
|
| 525 |
+
|
| 526 |
+
# # Apply overlay using where instead of boolean indexing
|
| 527 |
+
# result = np.where(
|
| 528 |
+
# dilated_mask[..., np.newaxis].astype(bool),
|
| 529 |
+
# cv.addWeighted(img, 0.7, red_overlay, 0.3, 0),
|
| 530 |
+
# img
|
| 531 |
+
# )
|
| 532 |
+
|
| 533 |
+
# # Convert back to original dtype
|
| 534 |
+
# if original_dtype != np.float32:
|
| 535 |
+
# result = np.clip(result, 0, 255).astype(original_dtype)
|
| 536 |
+
|
| 537 |
+
# return result, heatmap_np
|
| 538 |
+
#________________________________________________________________________________________________
|
| 539 |
+
|
| 540 |
+
# def infer(self, img, heatmap=None, alpha=0.1):
|
| 541 |
+
# '''
|
| 542 |
+
# Perform inference with binary red mask (no intensity variation) and dilation.
|
| 543 |
+
# Heatmap is fully recalculated every frame — no temporal decay or retention.
|
| 544 |
+
|
| 545 |
+
# Returns:
|
| 546 |
+
# - result: Image with solid red overlay on detections
|
| 547 |
+
# - heatmap_np: Binary heatmap array
|
| 548 |
+
# '''
|
| 549 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 550 |
+
|
| 551 |
+
# # Ensure input is numpy array and get original dtype
|
| 552 |
+
# original_dtype = img.dtype
|
| 553 |
+
# img = np.asarray(img).astype(np.float32)
|
| 554 |
+
# H, W, C = img.shape
|
| 555 |
+
|
| 556 |
+
# # Initialize tensors
|
| 557 |
+
# img_tensor = torch.from_numpy(img).float().to(device)
|
| 558 |
+
|
| 559 |
+
# # Detection processing
|
| 560 |
+
# detection_mask = torch.ones((H, W), dtype=torch.bool, device=device)
|
| 561 |
+
|
| 562 |
+
# for k in range(self.K):
|
| 563 |
+
# B_mask = (self.B >= (k + 1)).to(device)
|
| 564 |
+
# mu_k = self.mu[:, :, k, :].to(device)
|
| 565 |
+
# sigma_k = self.sigma[:, :, k, :, :].to(device)
|
| 566 |
+
|
| 567 |
+
# delta = img_tensor - mu_k
|
| 568 |
+
# delta = delta.unsqueeze(-1)
|
| 569 |
+
# sigma_inv = torch.linalg.inv(sigma_k)
|
| 570 |
+
# temp = torch.matmul(sigma_inv, delta)
|
| 571 |
+
# dist_sq = torch.matmul(delta.transpose(-2, -1), temp).squeeze(-1).squeeze(-1)
|
| 572 |
+
# dist = torch.sqrt(dist_sq + 1e-5)
|
| 573 |
+
# match_mask = (dist < 9.5) & B_mask
|
| 574 |
+
# detection_mask[match_mask] = False
|
| 575 |
+
# img_tensor[match_mask] = mu_k[match_mask]
|
| 576 |
+
|
| 577 |
+
# # Generate a binary heatmap (no decay, no accumulation)
|
| 578 |
+
# foreground_mask = detection_mask & (img_tensor.abs().sum(dim=-1) > 0)
|
| 579 |
+
# heatmap = torch.zeros((H, W), dtype=torch.float32, device=device)
|
| 580 |
+
# heatmap[foreground_mask] = alpha
|
| 581 |
+
# heatmap_np = heatmap.cpu().numpy()
|
| 582 |
+
|
| 583 |
+
# # Create binary mask and dilate
|
| 584 |
+
# binary_mask = (heatmap_np > 0.05).astype(np.uint8)
|
| 585 |
+
# kernel = np.ones((5, 5), np.uint8)
|
| 586 |
+
# dilated_mask = cv.dilate(binary_mask, kernel, iterations=1)
|
| 587 |
+
|
| 588 |
+
# # Create solid red overlay (BGR)
|
| 589 |
+
# red_overlay = np.zeros_like(img)
|
| 590 |
+
# red_overlay[..., 2] = 200 # Red channel
|
| 591 |
+
|
| 592 |
+
# # Apply overlay
|
| 593 |
+
# result = np.where(
|
| 594 |
+
# dilated_mask[..., np.newaxis].astype(bool),
|
| 595 |
+
# cv.addWeighted(img, 0.7, red_overlay, 0.3, 0),
|
| 596 |
+
# img
|
| 597 |
+
# )
|
| 598 |
+
|
| 599 |
+
# # Convert back to original dtype
|
| 600 |
+
# if original_dtype != np.float32:
|
| 601 |
+
# result = np.clip(result, 0, 255).astype(original_dtype)
|
| 602 |
+
|
| 603 |
+
# return result, heatmap_np
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
def infer(self, img, heatmap=None, alpha=0.1):
|
| 607 |
+
'''
|
| 608 |
+
Perform inference with binary red mask and GPU-based dilation.
|
| 609 |
+
Heatmap is recalculated each frame (no temporal retention).
|
| 610 |
+
|
| 611 |
+
Returns:
|
| 612 |
+
- result: Image with red overlay where foreground is detected.
|
| 613 |
+
- heatmap_np: Numpy array of binary heatmap.
|
| 614 |
+
'''
|
| 615 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 616 |
+
|
| 617 |
+
# Convert image to float32 and move to GPU
|
| 618 |
+
original_dtype = img.dtype
|
| 619 |
+
img = np.asarray(img).astype(np.float32)
|
| 620 |
+
H, W, C = img.shape
|
| 621 |
+
img_tensor = torch.from_numpy(img).float().to(device)
|
| 622 |
+
|
| 623 |
+
# Initialize detection mask as all True (foreground by default)
|
| 624 |
+
detection_mask = torch.ones((H, W), dtype=torch.bool, device=device)
|
| 625 |
+
|
| 626 |
+
for k in range(self.K):
|
| 627 |
+
B_mask = (self.B >= (k + 1)).to(device)
|
| 628 |
+
mu_k = self.mu[:, :, k, :].to(device)
|
| 629 |
+
sigma_k = self.sigma[:, :, k, :, :].to(device)
|
| 630 |
+
|
| 631 |
+
delta = img_tensor - mu_k
|
| 632 |
+
delta = delta.unsqueeze(-1) # shape: (H, W, 3, 1)
|
| 633 |
+
sigma_inv = torch.linalg.inv(sigma_k)
|
| 634 |
+
temp = torch.matmul(sigma_inv, delta)
|
| 635 |
+
dist_sq = torch.matmul(delta.transpose(-2, -1), temp).squeeze(-1).squeeze(-1)
|
| 636 |
+
dist = torch.sqrt(dist_sq + 1e-5)
|
| 637 |
+
|
| 638 |
+
match_mask = (dist < 9.5) & B_mask
|
| 639 |
+
detection_mask[match_mask] = False
|
| 640 |
+
# img_tensor[match_mask] = mu_k[match_mask]
|
| 641 |
+
|
| 642 |
+
# Generate heatmap
|
| 643 |
+
foreground_mask = detection_mask & (img_tensor.abs().sum(dim=-1) > 0)
|
| 644 |
+
heatmap_tensor = torch.zeros((H, W), dtype=torch.float32, device=device)
|
| 645 |
+
heatmap_tensor[foreground_mask] = alpha
|
| 646 |
+
|
| 647 |
+
# Convert heatmap to binary mask and apply dilation (GPU-based)
|
| 648 |
+
binary_mask = (heatmap_tensor > 0.05).float().unsqueeze(0).unsqueeze(0) # shape: (1, 1, H, W)
|
| 649 |
+
kernel = torch.ones((1, 1, 5, 5), dtype=torch.float32, device=device)
|
| 650 |
+
dilated = F.conv2d(binary_mask, kernel, padding=2)
|
| 651 |
+
dilated_mask = (dilated > 0).squeeze().to(torch.bool)
|
| 652 |
+
|
| 653 |
+
# Create red overlay (on GPU)
|
| 654 |
+
red_overlay = torch.zeros_like(img_tensor)
|
| 655 |
+
red_overlay[..., 2] = 200 # Red channel
|
| 656 |
+
|
| 657 |
+
# Blend red overlay on detected regions
|
| 658 |
+
result_tensor = torch.where(
|
| 659 |
+
dilated_mask.unsqueeze(-1),
|
| 660 |
+
0.7 * img_tensor + 0.3 * red_overlay,
|
| 661 |
+
img_tensor
|
| 662 |
+
)
|
| 663 |
+
|
| 664 |
+
# Convert back to NumPy and original dtype
|
| 665 |
+
result = result_tensor.clamp(0, 255).cpu().numpy()
|
| 666 |
+
if original_dtype != np.float32:
|
| 667 |
+
result = result.astype(original_dtype)
|
| 668 |
+
|
| 669 |
+
heatmap_np = (heatmap_tensor > 0.05).float().cpu().numpy()
|
| 670 |
+
|
| 671 |
+
return result, heatmap_np
|
| 672 |
+
|
README.md
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Uvscan
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom: yellow
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.33.2
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Uvscan Kitchenheatmap
|
| 3 |
+
emoji: 📉
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.33.2
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import cv2 # OpenCV for video processing (if used)
|
| 5 |
+
from processors.extract_frames import video_to_keyframes
|
| 6 |
+
from processors.apply_mask import apply_mask_and_crop
|
| 7 |
+
from processors.run_gmm import run_gmm_inference
|
| 8 |
+
from processors.compose_video import compose_final_video
|
| 9 |
+
# import the processing functions from original app
|
| 10 |
+
# from heatmap_module import video_to_keyframes, apply_mask_and_crop, run_gmm_inference, compose_final_video
|
| 11 |
+
|
| 12 |
+
# Helper to extract first frame for mask drawing
|
| 13 |
+
def get_first_frame(video_path):
|
| 14 |
+
cap = cv2.VideoCapture(video_path)
|
| 15 |
+
success, frame = cap.read()
|
| 16 |
+
cap.release()
|
| 17 |
+
if success:
|
| 18 |
+
# Convert BGR to RGB color for PIL/Gradio
|
| 19 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 20 |
+
return Image.fromarray(frame)
|
| 21 |
+
else:
|
| 22 |
+
return None
|
| 23 |
+
|
| 24 |
+
# Helper to get mask from drawn data
|
| 25 |
+
def extract_mask_from_drawn(composite_image, background_image):
|
| 26 |
+
# Convert to numpy arrays for comparison
|
| 27 |
+
comp = np.array(composite_image)
|
| 28 |
+
bg = np.array(background_image)
|
| 29 |
+
if comp.shape != bg.shape:
|
| 30 |
+
# If background not same shape as composite, just threshold comp
|
| 31 |
+
gray = comp if comp.ndim == 2 else comp[..., :3].mean(axis=-1)
|
| 32 |
+
mask = (gray > 10).astype(np.uint8) # simple threshold
|
| 33 |
+
else:
|
| 34 |
+
# Compute difference where composite != background (assuming draw color != background)
|
| 35 |
+
diff = np.any(comp != bg, axis=-1)
|
| 36 |
+
mask = diff.astype(np.uint8)
|
| 37 |
+
return mask * 255 # return as binary mask image (255 inside mask)
|
| 38 |
+
|
| 39 |
+
def process_video(video_file, mask_image, drawn_editor, progress=gr.Progress()):
|
| 40 |
+
# video_file: path to uploaded video
|
| 41 |
+
# mask_image: numpy array (HxW or HxWx3) if uploaded, or None
|
| 42 |
+
# drawn_editor: dict with 'background', 'composite' from ImageEditor, or None
|
| 43 |
+
|
| 44 |
+
# Decide mask source
|
| 45 |
+
mask = None
|
| 46 |
+
if mask_image is not None:
|
| 47 |
+
# Ensure mask is binary (if user uploaded a colored mask, convert to gray)
|
| 48 |
+
mask = mask_image
|
| 49 |
+
if mask.ndim == 3:
|
| 50 |
+
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
|
| 51 |
+
_, mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
|
| 52 |
+
elif drawn_editor is not None:
|
| 53 |
+
comp = drawn_editor["composite"]
|
| 54 |
+
bg = drawn_editor["background"]
|
| 55 |
+
mask = extract_mask_from_drawn(comp, bg)
|
| 56 |
+
else:
|
| 57 |
+
raise gr.Error("Please provide a mask (upload or draw).")
|
| 58 |
+
|
| 59 |
+
progress(0, desc="Extracting keyframes...")
|
| 60 |
+
frames = video_to_keyframes(video_file)
|
| 61 |
+
progress(0.3, desc="Applying mask and cropping...")
|
| 62 |
+
cropped_frames = apply_mask_and_crop(frames, mask)
|
| 63 |
+
progress(0.6, desc="Running inference on frames...")
|
| 64 |
+
output_frames = run_gmm_inference(cropped_frames)
|
| 65 |
+
progress(0.85, desc="Composing final video...")
|
| 66 |
+
result_path = compose_final_video(output_frames, "heatmap_output.mp4")
|
| 67 |
+
progress(1.0, desc="Done")
|
| 68 |
+
|
| 69 |
+
return "✅ Heatmap video generated!", result_path
|
| 70 |
+
|
| 71 |
+
# Define the Gradio app layout
|
| 72 |
+
custom_css = """
|
| 73 |
+
.gradio-container {background: url('/gradio_api/file=background.jpg') center/cover no-repeat !important;
|
| 74 |
+
background-color: #000 !important;}
|
| 75 |
+
.panel {max-width: 800px; margin: 2rem auto; padding: 2rem; background: rgba(30,30,30, 0.8); border-radius: 8px;}
|
| 76 |
+
"""
|
| 77 |
+
with gr.Blocks(theme=gr.themes.Monochrome(), css=custom_css, title="Heatmap Generator") as demo:
|
| 78 |
+
gr.Markdown("## 🎥 Heatmap Generator", elem_classes="panel")
|
| 79 |
+
with gr.Row(elem_classes="panel"):
|
| 80 |
+
video_input = gr.Video(label="Upload Video", format="mp4")
|
| 81 |
+
with gr.Tabs(elem_classes="panel"):
|
| 82 |
+
with gr.Tab("Upload Mask"):
|
| 83 |
+
mask_upload = gr.Image(label="Upload Mask Image", type="numpy")
|
| 84 |
+
with gr.Tab("Draw Mask"):
|
| 85 |
+
draw_info = gr.Markdown("*Draw mask on the frame:* Use brush to highlight the region of interest.")
|
| 86 |
+
mask_draw = gr.ImageEditor(label="Draw Mask", tool="brush", type="pil") # we'll get PIL images
|
| 87 |
+
# Buttons
|
| 88 |
+
with gr.Row(elem_classes="panel"):
|
| 89 |
+
generate_btn = gr.Button("🔥 Generate Heatmap", variant="primary")
|
| 90 |
+
reset_btn = gr.Button("Reset")
|
| 91 |
+
download_btn = gr.DownloadButton("Download Video", file_name="heatmap_output.mp4")
|
| 92 |
+
# Status and output
|
| 93 |
+
with gr.Row(elem_classes="panel"):
|
| 94 |
+
status_text = gr.Markdown("") # to show status or final message
|
| 95 |
+
with gr.Row(elem_classes="panel"):
|
| 96 |
+
output_video = gr.Video(label="Output Video")
|
| 97 |
+
# Event handlers
|
| 98 |
+
# When video is uploaded, extract a frame and set it in the draw component
|
| 99 |
+
def prep_frame_for_drawing(video_file):
|
| 100 |
+
if video_file is None:
|
| 101 |
+
return None
|
| 102 |
+
frame = get_first_frame(video_file)
|
| 103 |
+
return {'background': frame, 'composite': frame} # initial EditorValue
|
| 104 |
+
video_input.change(fn=prep_frame_for_drawing, inputs=video_input, outputs=mask_draw)
|
| 105 |
+
# Generate button triggers processing
|
| 106 |
+
generate_btn.click(fn=process_video, inputs=[video_input, mask_upload, mask_draw], outputs=[status_text, output_video])
|
| 107 |
+
# After video is generated, enable download (bind the file path from output)
|
| 108 |
+
# (Gradio may automatically handle download if output_video has a file source)
|
| 109 |
+
generate_btn.click(fn=lambda vid: vid, inputs=output_video, outputs=download_btn)
|
| 110 |
+
# Reset button clears all
|
| 111 |
+
reset_btn.click(fn=lambda: (None, None, None, "", None), inputs=[],
|
| 112 |
+
outputs=[video_input, mask_upload, mask_draw, status_text, output_video])
|
| 113 |
+
# Launch (if running locally; on HF Spaces this is handled automatically)
|
| 114 |
+
if __name__ == "__main__":
|
| 115 |
+
demo.launch()
|
gmm_model.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ee1c6601c803d73838183b47e7a40ea79f8746135581af3d9a93b6a7151c16ba
|
| 3 |
+
size 15263359
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
kivy>=2.3.0
|
| 2 |
+
kivymd>=1.2.0
|
| 3 |
+
matplotlib>=3.5
|
| 4 |
+
opencv-python>=4.8
|
| 5 |
+
numpy>=1.23
|
| 6 |
+
scipy>=1.10
|
| 7 |
+
joblib>=1.3
|
| 8 |
+
torch>=2.0
|
| 9 |
+
Pillow>=9.5
|
| 10 |
+
gradio==3.35.2
|