Anas Awadalla
commited on
Commit
·
4f35c65
1
Parent(s):
4db9f63
some fixes
Browse files- src/streamlit_app.py +124 -59
src/streamlit_app.py
CHANGED
@@ -153,6 +153,7 @@ def fetch_leaderboard_data():
|
|
153 |
# Extract UI type results if available
|
154 |
ui_type_results = detailed_results.get("by_ui_type", {})
|
155 |
dataset_type_results = detailed_results.get("by_dataset_type", {})
|
|
|
156 |
|
157 |
# Create a compact result entry (only keep what we need for visualization)
|
158 |
result_entry = {
|
@@ -167,7 +168,8 @@ def fetch_leaderboard_data():
|
|
167 |
"checkpoint_steps": metadata.get("checkpoint_steps"),
|
168 |
"training_loss": metadata.get("training_loss"),
|
169 |
"ui_type_results": ui_type_results,
|
170 |
-
"dataset_type_results": dataset_type_results
|
|
|
171 |
}
|
172 |
|
173 |
results.append(result_entry)
|
@@ -239,55 +241,99 @@ def parse_ui_type_metrics(df: pd.DataFrame, dataset_filter: str) -> pd.DataFrame
|
|
239 |
model = row['model']
|
240 |
ui_results = row.get('ui_type_results', {})
|
241 |
dataset_type_results = row.get('dataset_type_results', {})
|
|
|
242 |
|
243 |
-
# For ScreenSpot datasets
|
244 |
if 'screenspot' in dataset_filter.lower():
|
245 |
-
#
|
246 |
-
|
247 |
-
|
248 |
-
web_text = ui_results.get('web_text', {}).get('correct', 0) / max(ui_results.get('web_text', {}).get('total', 1), 1) * 100
|
249 |
-
web_icon = ui_results.get('web_icon', {}).get('correct', 0) / max(ui_results.get('web_icon', {}).get('total', 1), 1) * 100
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
for dataset_key in dataset_type_results:
|
255 |
if 'screenspot' in dataset_key.lower():
|
256 |
dataset_data = dataset_type_results[dataset_key]
|
257 |
if 'by_ui_type' in dataset_data:
|
258 |
ui_data = dataset_data['by_ui_type']
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
break
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
overall = (desktop_avg + web_avg) / 2 if (desktop_avg > 0 or web_avg > 0) else row['overall_accuracy']
|
274 |
-
else:
|
275 |
-
overall = row['overall_accuracy']
|
276 |
-
|
277 |
-
metrics_list.append({
|
278 |
-
'model': model,
|
279 |
-
'desktop_text': desktop_text,
|
280 |
-
'desktop_icon': desktop_icon,
|
281 |
-
'web_text': web_text,
|
282 |
-
'web_icon': web_icon,
|
283 |
-
'desktop_avg': desktop_avg,
|
284 |
-
'web_avg': web_avg,
|
285 |
-
'text_avg': text_avg,
|
286 |
-
'icon_avg': icon_avg,
|
287 |
-
'overall': overall,
|
288 |
-
'is_best_not_last': row.get('is_best_not_last', False),
|
289 |
-
'all_checkpoints': row.get('all_checkpoints', [])
|
290 |
-
})
|
291 |
else:
|
292 |
# For non-screenspot datasets, just pass through overall accuracy
|
293 |
metrics_list.append({
|
@@ -595,26 +641,45 @@ def main():
|
|
595 |
for _, cp in checkpoint_df.iterrows():
|
596 |
ui_results = cp.get('ui_type_results', {})
|
597 |
dataset_type_results = cp.get('dataset_type_results', {})
|
|
|
|
|
|
|
|
|
|
|
598 |
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
|
619 |
desktop_avg = (desktop_text + desktop_icon) / 2
|
620 |
web_avg = (web_text + web_icon) / 2
|
|
|
153 |
# Extract UI type results if available
|
154 |
ui_type_results = detailed_results.get("by_ui_type", {})
|
155 |
dataset_type_results = detailed_results.get("by_dataset_type", {})
|
156 |
+
results_by_file = detailed_results.get("by_file", {})
|
157 |
|
158 |
# Create a compact result entry (only keep what we need for visualization)
|
159 |
result_entry = {
|
|
|
168 |
"checkpoint_steps": metadata.get("checkpoint_steps"),
|
169 |
"training_loss": metadata.get("training_loss"),
|
170 |
"ui_type_results": ui_type_results,
|
171 |
+
"dataset_type_results": dataset_type_results,
|
172 |
+
"results_by_file": results_by_file
|
173 |
}
|
174 |
|
175 |
results.append(result_entry)
|
|
|
241 |
model = row['model']
|
242 |
ui_results = row.get('ui_type_results', {})
|
243 |
dataset_type_results = row.get('dataset_type_results', {})
|
244 |
+
results_by_file = row.get('results_by_file', {})
|
245 |
|
246 |
+
# For ScreenSpot datasets
|
247 |
if 'screenspot' in dataset_filter.lower():
|
248 |
+
# Check if we have desktop/web breakdown in results_by_file
|
249 |
+
desktop_file = None
|
250 |
+
web_file = None
|
|
|
|
|
251 |
|
252 |
+
for filename, file_results in results_by_file.items():
|
253 |
+
if 'desktop' in filename.lower():
|
254 |
+
desktop_file = file_results
|
255 |
+
elif 'web' in filename.lower():
|
256 |
+
web_file = file_results
|
257 |
+
|
258 |
+
if desktop_file and web_file:
|
259 |
+
# We have desktop/web breakdown
|
260 |
+
desktop_text = desktop_file.get('by_ui_type', {}).get('text', {}).get('correct', 0) / max(desktop_file.get('by_ui_type', {}).get('text', {}).get('total', 1), 1) * 100
|
261 |
+
desktop_icon = desktop_file.get('by_ui_type', {}).get('icon', {}).get('correct', 0) / max(desktop_file.get('by_ui_type', {}).get('icon', {}).get('total', 1), 1) * 100
|
262 |
+
web_text = web_file.get('by_ui_type', {}).get('text', {}).get('correct', 0) / max(web_file.get('by_ui_type', {}).get('text', {}).get('total', 1), 1) * 100
|
263 |
+
web_icon = web_file.get('by_ui_type', {}).get('icon', {}).get('correct', 0) / max(web_file.get('by_ui_type', {}).get('icon', {}).get('total', 1), 1) * 100
|
264 |
+
|
265 |
+
# Calculate averages
|
266 |
+
desktop_avg = (desktop_text + desktop_icon) / 2 if (desktop_text > 0 or desktop_icon > 0) else 0
|
267 |
+
web_avg = (web_text + web_icon) / 2 if (web_text > 0 or web_icon > 0) else 0
|
268 |
+
text_avg = (desktop_text + web_text) / 2 if (desktop_text > 0 or web_text > 0) else 0
|
269 |
+
icon_avg = (desktop_icon + web_icon) / 2 if (desktop_icon > 0 or web_icon > 0) else 0
|
270 |
+
|
271 |
+
# For screenspot-v2, calculate the overall as average of desktop and web
|
272 |
+
if dataset_filter == 'screenspot-v2':
|
273 |
+
overall = (desktop_avg + web_avg) / 2 if (desktop_avg > 0 or web_avg > 0) else row['overall_accuracy']
|
274 |
+
else:
|
275 |
+
overall = row['overall_accuracy']
|
276 |
+
|
277 |
+
metrics_list.append({
|
278 |
+
'model': model,
|
279 |
+
'desktop_text': desktop_text,
|
280 |
+
'desktop_icon': desktop_icon,
|
281 |
+
'web_text': web_text,
|
282 |
+
'web_icon': web_icon,
|
283 |
+
'desktop_avg': desktop_avg,
|
284 |
+
'web_avg': web_avg,
|
285 |
+
'text_avg': text_avg,
|
286 |
+
'icon_avg': icon_avg,
|
287 |
+
'overall': overall,
|
288 |
+
'is_best_not_last': row.get('is_best_not_last', False),
|
289 |
+
'all_checkpoints': row.get('all_checkpoints', [])
|
290 |
+
})
|
291 |
+
elif 'text' in ui_results and 'icon' in ui_results:
|
292 |
+
# Simple text/icon structure without desktop/web breakdown
|
293 |
+
text_acc = (ui_results.get('text', {}).get('correct', 0) / max(ui_results.get('text', {}).get('total', 1), 1)) * 100
|
294 |
+
icon_acc = (ui_results.get('icon', {}).get('correct', 0) / max(ui_results.get('icon', {}).get('total', 1), 1)) * 100
|
295 |
+
|
296 |
+
metrics_list.append({
|
297 |
+
'model': model,
|
298 |
+
'text': text_acc,
|
299 |
+
'icon': icon_acc,
|
300 |
+
'overall': row['overall_accuracy'],
|
301 |
+
'is_best_not_last': row.get('is_best_not_last', False),
|
302 |
+
'all_checkpoints': row.get('all_checkpoints', [])
|
303 |
+
})
|
304 |
+
else:
|
305 |
+
# Try to get from dataset_type_results if available
|
306 |
+
found_data = False
|
307 |
for dataset_key in dataset_type_results:
|
308 |
if 'screenspot' in dataset_key.lower():
|
309 |
dataset_data = dataset_type_results[dataset_key]
|
310 |
if 'by_ui_type' in dataset_data:
|
311 |
ui_data = dataset_data['by_ui_type']
|
312 |
+
text_data = ui_data.get('text', {})
|
313 |
+
icon_data = ui_data.get('icon', {})
|
314 |
+
|
315 |
+
text_acc = (text_data.get('correct', 0) / max(text_data.get('total', 1), 1)) * 100
|
316 |
+
icon_acc = (icon_data.get('correct', 0) / max(icon_data.get('total', 1), 1)) * 100
|
317 |
+
|
318 |
+
metrics_list.append({
|
319 |
+
'model': model,
|
320 |
+
'text': text_acc,
|
321 |
+
'icon': icon_acc,
|
322 |
+
'overall': row['overall_accuracy'],
|
323 |
+
'is_best_not_last': row.get('is_best_not_last', False),
|
324 |
+
'all_checkpoints': row.get('all_checkpoints', [])
|
325 |
+
})
|
326 |
+
found_data = True
|
327 |
break
|
328 |
+
|
329 |
+
if not found_data:
|
330 |
+
# No UI type data available, just use overall
|
331 |
+
metrics_list.append({
|
332 |
+
'model': model,
|
333 |
+
'overall': row['overall_accuracy'],
|
334 |
+
'is_best_not_last': row.get('is_best_not_last', False),
|
335 |
+
'all_checkpoints': row.get('all_checkpoints', [])
|
336 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
else:
|
338 |
# For non-screenspot datasets, just pass through overall accuracy
|
339 |
metrics_list.append({
|
|
|
641 |
for _, cp in checkpoint_df.iterrows():
|
642 |
ui_results = cp.get('ui_type_results', {})
|
643 |
dataset_type_results = cp.get('dataset_type_results', {})
|
644 |
+
results_by_file = cp.get('results_by_file', {})
|
645 |
+
|
646 |
+
# Check if we have desktop/web breakdown in results_by_file
|
647 |
+
desktop_file = None
|
648 |
+
web_file = None
|
649 |
|
650 |
+
for filename, file_results in results_by_file.items():
|
651 |
+
if 'desktop' in filename.lower():
|
652 |
+
desktop_file = file_results
|
653 |
+
elif 'web' in filename.lower():
|
654 |
+
web_file = file_results
|
655 |
|
656 |
+
if desktop_file and web_file:
|
657 |
+
# We have desktop/web breakdown
|
658 |
+
desktop_text = desktop_file.get('by_ui_type', {}).get('text', {}).get('correct', 0) / max(desktop_file.get('by_ui_type', {}).get('text', {}).get('total', 1), 1) * 100
|
659 |
+
desktop_icon = desktop_file.get('by_ui_type', {}).get('icon', {}).get('correct', 0) / max(desktop_file.get('by_ui_type', {}).get('icon', {}).get('total', 1), 1) * 100
|
660 |
+
web_text = web_file.get('by_ui_type', {}).get('text', {}).get('correct', 0) / max(web_file.get('by_ui_type', {}).get('text', {}).get('total', 1), 1) * 100
|
661 |
+
web_icon = web_file.get('by_ui_type', {}).get('icon', {}).get('correct', 0) / max(web_file.get('by_ui_type', {}).get('icon', {}).get('total', 1), 1) * 100
|
662 |
+
else:
|
663 |
+
# Fallback to simple UI type results
|
664 |
+
desktop_text = ui_results.get('desktop_text', {}).get('correct', 0) / max(ui_results.get('desktop_text', {}).get('total', 1), 1) * 100
|
665 |
+
desktop_icon = ui_results.get('desktop_icon', {}).get('correct', 0) / max(ui_results.get('desktop_icon', {}).get('total', 1), 1) * 100
|
666 |
+
web_text = ui_results.get('web_text', {}).get('correct', 0) / max(ui_results.get('web_text', {}).get('total', 1), 1) * 100
|
667 |
+
web_icon = ui_results.get('web_icon', {}).get('correct', 0) / max(ui_results.get('web_icon', {}).get('total', 1), 1) * 100
|
668 |
+
|
669 |
+
# If still all zeros, try dataset_type_results
|
670 |
+
if desktop_text == 0 and desktop_icon == 0 and web_text == 0 and web_icon == 0:
|
671 |
+
for dataset_key in dataset_type_results:
|
672 |
+
if 'screenspot' in dataset_key.lower():
|
673 |
+
dataset_data = dataset_type_results[dataset_key]
|
674 |
+
if 'by_ui_type' in dataset_data:
|
675 |
+
ui_data = dataset_data['by_ui_type']
|
676 |
+
# For simple text/icon without desktop/web
|
677 |
+
text_val = ui_data.get('text', {}).get('correct', 0) / max(ui_data.get('text', {}).get('total', 1), 1) * 100
|
678 |
+
icon_val = ui_data.get('icon', {}).get('correct', 0) / max(ui_data.get('icon', {}).get('total', 1), 1) * 100
|
679 |
+
# Assign same values to desktop and web as we don't have the breakdown
|
680 |
+
desktop_text = web_text = text_val
|
681 |
+
desktop_icon = web_icon = icon_val
|
682 |
+
break
|
683 |
|
684 |
desktop_avg = (desktop_text + desktop_icon) / 2
|
685 |
web_avg = (web_text + web_icon) / 2
|