Anas Awadalla
commited on
Commit
·
587e0bc
1
Parent(s):
b47cdd1
v0
Browse files- README.md +70 -4
- requirements.txt +5 -3
- src/streamlit_app.py +351 -37
README.md
CHANGED
@@ -11,9 +11,75 @@ pinned: false
|
|
11 |
short_description: Streamlit template space
|
12 |
---
|
13 |
|
14 |
-
#
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
short_description: Streamlit template space
|
12 |
---
|
13 |
|
14 |
+
# Grounding Benchmark Leaderboard Viewer
|
15 |
|
16 |
+
A Streamlit application for visualizing model performance on grounding benchmarks.
|
17 |
|
18 |
+
## Features
|
19 |
+
|
20 |
+
- **Real-time Data**: Fetches results directly from the HuggingFace leaderboard repository
|
21 |
+
- **Interactive Visualizations**: Bar charts comparing model performance across different metrics
|
22 |
+
- **Baseline Comparisons**: Shows baseline models (Qwen2-VL, UI-TARS) alongside evaluated models
|
23 |
+
- **UI Type Breakdown**: For ScreenSpot datasets, shows performance by:
|
24 |
+
- Desktop vs Web
|
25 |
+
- Text vs Icon elements
|
26 |
+
- Overall averages
|
27 |
+
- **Model Details**: View training loss, checkpoint steps, and evaluation timestamps
|
28 |
+
- **Raw Data Access**: Inspect the complete evaluation results JSON
|
29 |
+
|
30 |
+
## Installation
|
31 |
+
|
32 |
+
1. Clone or download this directory
|
33 |
+
2. Install dependencies:
|
34 |
+
```bash
|
35 |
+
pip install -r requirements.txt
|
36 |
+
```
|
37 |
+
|
38 |
+
## Running the App
|
39 |
+
|
40 |
+
```bash
|
41 |
+
streamlit run src/streamlit_app.py
|
42 |
+
```
|
43 |
+
|
44 |
+
The app will open in your browser at `http://localhost:8501`
|
45 |
+
|
46 |
+
## Usage
|
47 |
+
|
48 |
+
1. **Select Dataset**: Use the sidebar to choose which benchmark dataset to view (e.g., screenspot-v2, screenspot-pro)
|
49 |
+
|
50 |
+
2. **Filter Models**: Optionally filter to view a specific model or all models
|
51 |
+
|
52 |
+
3. **View Charts**: The main page displays:
|
53 |
+
- Overall metrics (number of models, best accuracy, total samples)
|
54 |
+
- Bar charts comparing performance across different UI types
|
55 |
+
- Baseline model comparisons (shown in orange)
|
56 |
+
|
57 |
+
4. **Explore Details**:
|
58 |
+
- Expand "Model Details" to see training metadata
|
59 |
+
- Expand "Detailed UI Type Breakdown" for a comprehensive table
|
60 |
+
- Expand "Raw Data" to inspect the complete JSON results
|
61 |
+
|
62 |
+
## Data Source
|
63 |
+
|
64 |
+
The app fetches data from the HuggingFace dataset repository:
|
65 |
+
- Repository: `mlfoundations-cua-dev/leaderboard`
|
66 |
+
- Path: `grounding/[dataset_name]/[model_results].json`
|
67 |
+
|
68 |
+
## Supported Datasets
|
69 |
+
|
70 |
+
- **ScreenSpot-v2**: Web and desktop UI element grounding
|
71 |
+
- **ScreenSpot-Pro**: Professional UI grounding benchmark
|
72 |
+
- **ShowdownClicks**: Click prediction benchmark
|
73 |
+
- And more as they are added to the leaderboard
|
74 |
+
|
75 |
+
## Baseline Models
|
76 |
+
|
77 |
+
For ScreenSpot-v2, the following baselines are included:
|
78 |
+
- Qwen2-VL-7B
|
79 |
+
- UI-TARS-2B
|
80 |
+
- UI-TARS-7B
|
81 |
+
- UI-TARS-72B
|
82 |
+
|
83 |
+
## Caching
|
84 |
+
|
85 |
+
Results are cached for 5 minutes to improve performance. The cache automatically refreshes to show new evaluation results.
|
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
-
|
2 |
-
pandas
|
3 |
-
|
|
|
|
|
|
1 |
+
streamlit>=1.28.0
|
2 |
+
pandas>=1.5.0
|
3 |
+
altair>=5.0.0
|
4 |
+
huggingface-hub>=0.19.0
|
5 |
+
numpy>=1.24.0
|
src/streamlit_app.py
CHANGED
@@ -1,40 +1,354 @@
|
|
|
|
|
|
1 |
import altair as alt
|
|
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
import streamlit as st
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
""
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
import altair as alt
|
4 |
+
from huggingface_hub import HfApi, hf_hub_download
|
5 |
+
import json
|
6 |
+
from pathlib import Path
|
7 |
+
import os
|
8 |
+
from typing import Dict, List, Optional
|
9 |
import numpy as np
|
|
|
|
|
10 |
|
11 |
+
# Page config
|
12 |
+
st.set_page_config(
|
13 |
+
page_title="Grounding Benchmark Leaderboard",
|
14 |
+
page_icon="🎯",
|
15 |
+
layout="wide"
|
16 |
+
)
|
17 |
+
|
18 |
+
# Constants
|
19 |
+
REPO_ID = "mlfoundations-cua-dev/leaderboard"
|
20 |
+
GROUNDING_PATH = "grounding"
|
21 |
+
|
22 |
+
# Baselines for different datasets
|
23 |
+
BASELINES = {
|
24 |
+
"screenspot-v2": {
|
25 |
+
"Qwen2-VL-7B": {
|
26 |
+
"desktop_text": 52.01,
|
27 |
+
"desktop_icon": 44.98,
|
28 |
+
"web_text": 33.04,
|
29 |
+
"web_icon": 21.84,
|
30 |
+
"overall": 37.96
|
31 |
+
},
|
32 |
+
"UI-TARS-2B": {
|
33 |
+
"desktop_text": 90.7,
|
34 |
+
"desktop_icon": 68.6,
|
35 |
+
"web_text": 87.2,
|
36 |
+
"web_icon": 84.7,
|
37 |
+
"overall": 82.8
|
38 |
+
},
|
39 |
+
"UI-TARS-7B": {
|
40 |
+
"desktop_text": 95.4,
|
41 |
+
"desktop_icon": 87.8,
|
42 |
+
"web_text": 93.8,
|
43 |
+
"web_icon": 91.6,
|
44 |
+
"overall": 92.2
|
45 |
+
},
|
46 |
+
"UI-TARS-72B": {
|
47 |
+
"desktop_text": 91.2,
|
48 |
+
"desktop_icon": 87.8,
|
49 |
+
"web_text": 87.7,
|
50 |
+
"web_icon": 86.3,
|
51 |
+
"overall": 88.3
|
52 |
+
}
|
53 |
+
}
|
54 |
+
}
|
55 |
+
|
56 |
+
@st.cache_data(ttl=300) # Cache for 5 minutes
|
57 |
+
def fetch_leaderboard_data():
|
58 |
+
"""Fetch all grounding results from HuggingFace leaderboard."""
|
59 |
+
api = HfApi()
|
60 |
+
|
61 |
+
try:
|
62 |
+
# List all files in the grounding directory
|
63 |
+
files = api.list_repo_files(repo_id=REPO_ID, repo_type="dataset")
|
64 |
+
grounding_files = [f for f in files if f.startswith(f"{GROUNDING_PATH}/") and f.endswith(".json")]
|
65 |
+
|
66 |
+
results = []
|
67 |
+
for file_path in grounding_files:
|
68 |
+
try:
|
69 |
+
# Download and parse each JSON file
|
70 |
+
local_path = hf_hub_download(
|
71 |
+
repo_id=REPO_ID,
|
72 |
+
filename=file_path,
|
73 |
+
repo_type="dataset"
|
74 |
+
)
|
75 |
+
|
76 |
+
with open(local_path, 'r') as f:
|
77 |
+
data = json.load(f)
|
78 |
+
|
79 |
+
# Extract key information
|
80 |
+
metadata = data.get("metadata", {})
|
81 |
+
metrics = data.get("metrics", {})
|
82 |
+
detailed_results = data.get("detailed_results", {})
|
83 |
+
|
84 |
+
# Parse the file path to get dataset and model info
|
85 |
+
path_parts = file_path.split('/')
|
86 |
+
dataset_name = path_parts[1] if len(path_parts) > 1 else "unknown"
|
87 |
+
|
88 |
+
# Get model name from metadata or path
|
89 |
+
model_name = metadata.get("model_checkpoint", "").split('/')[-1]
|
90 |
+
if not model_name and len(path_parts) > 2:
|
91 |
+
model_name = path_parts[2].replace("results_", "").replace(".json", "")
|
92 |
+
|
93 |
+
# Extract UI type results if available
|
94 |
+
ui_type_results = detailed_results.get("by_ui_type", {})
|
95 |
+
dataset_type_results = detailed_results.get("by_dataset_type", {})
|
96 |
+
|
97 |
+
results.append({
|
98 |
+
"dataset": dataset_name,
|
99 |
+
"model": model_name,
|
100 |
+
"model_path": metadata.get("model_checkpoint", ""),
|
101 |
+
"overall_accuracy": metrics.get("accuracy", 0) * 100, # Convert to percentage
|
102 |
+
"total_samples": metrics.get("total", 0),
|
103 |
+
"timestamp": metadata.get("evaluation_timestamp", ""),
|
104 |
+
"checkpoint_steps": metadata.get("checkpoint_steps"),
|
105 |
+
"training_loss": metadata.get("training_loss"),
|
106 |
+
"ui_type_results": ui_type_results,
|
107 |
+
"dataset_type_results": dataset_type_results,
|
108 |
+
"raw_data": data
|
109 |
+
})
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
st.warning(f"Error loading {file_path}: {str(e)}")
|
113 |
+
continue
|
114 |
+
|
115 |
+
return pd.DataFrame(results)
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
st.error(f"Error fetching leaderboard data: {str(e)}")
|
119 |
+
return pd.DataFrame()
|
120 |
+
|
121 |
+
def parse_ui_type_metrics(df: pd.DataFrame, dataset_filter: str) -> pd.DataFrame:
|
122 |
+
"""Parse UI type metrics from the results dataframe."""
|
123 |
+
metrics_list = []
|
124 |
+
|
125 |
+
for _, row in df.iterrows():
|
126 |
+
if row['dataset'] != dataset_filter:
|
127 |
+
continue
|
128 |
+
|
129 |
+
model = row['model']
|
130 |
+
ui_results = row['ui_type_results']
|
131 |
+
|
132 |
+
# For ScreenSpot datasets, we have desktop/web and text/icon
|
133 |
+
if 'screenspot' in dataset_filter.lower():
|
134 |
+
# Calculate aggregated metrics
|
135 |
+
desktop_text = ui_results.get('desktop_text', {}).get('correct', 0) / max(ui_results.get('desktop_text', {}).get('total', 1), 1) * 100
|
136 |
+
desktop_icon = ui_results.get('desktop_icon', {}).get('correct', 0) / max(ui_results.get('desktop_icon', {}).get('total', 1), 1) * 100
|
137 |
+
web_text = ui_results.get('web_text', {}).get('correct', 0) / max(ui_results.get('web_text', {}).get('total', 1), 1) * 100
|
138 |
+
web_icon = ui_results.get('web_icon', {}).get('correct', 0) / max(ui_results.get('web_icon', {}).get('total', 1), 1) * 100
|
139 |
+
|
140 |
+
# Calculate averages
|
141 |
+
desktop_avg = (desktop_text + desktop_icon) / 2 if desktop_text or desktop_icon else 0
|
142 |
+
web_avg = (web_text + web_icon) / 2 if web_text or web_icon else 0
|
143 |
+
text_avg = (desktop_text + web_text) / 2 if desktop_text or web_text else 0
|
144 |
+
icon_avg = (desktop_icon + web_icon) / 2 if desktop_icon or web_icon else 0
|
145 |
+
|
146 |
+
metrics_list.append({
|
147 |
+
'model': model,
|
148 |
+
'desktop_text': desktop_text,
|
149 |
+
'desktop_icon': desktop_icon,
|
150 |
+
'web_text': web_text,
|
151 |
+
'web_icon': web_icon,
|
152 |
+
'desktop_avg': desktop_avg,
|
153 |
+
'web_avg': web_avg,
|
154 |
+
'text_avg': text_avg,
|
155 |
+
'icon_avg': icon_avg,
|
156 |
+
'overall': row['overall_accuracy']
|
157 |
+
})
|
158 |
+
|
159 |
+
return pd.DataFrame(metrics_list)
|
160 |
+
|
161 |
+
def create_bar_chart(data: pd.DataFrame, metric: str, title: str):
|
162 |
+
"""Create a bar chart for a specific metric."""
|
163 |
+
# Prepare data for the chart
|
164 |
+
chart_data = []
|
165 |
+
|
166 |
+
# Add model results
|
167 |
+
for _, row in data.iterrows():
|
168 |
+
if metric in row and row[metric] > 0:
|
169 |
+
chart_data.append({
|
170 |
+
'Model': row['model'],
|
171 |
+
'Score': row[metric],
|
172 |
+
'Type': 'Evaluated'
|
173 |
+
})
|
174 |
+
|
175 |
+
# Add baselines if available
|
176 |
+
dataset = st.session_state.get('selected_dataset', '')
|
177 |
+
if dataset in BASELINES:
|
178 |
+
for baseline_name, baseline_metrics in BASELINES[dataset].items():
|
179 |
+
metric_key = metric.replace('_avg', '').replace('avg', 'overall')
|
180 |
+
if metric_key in baseline_metrics:
|
181 |
+
chart_data.append({
|
182 |
+
'Model': baseline_name,
|
183 |
+
'Score': baseline_metrics[metric_key],
|
184 |
+
'Type': 'Baseline'
|
185 |
+
})
|
186 |
+
|
187 |
+
if not chart_data:
|
188 |
+
return None
|
189 |
+
|
190 |
+
df_chart = pd.DataFrame(chart_data)
|
191 |
+
|
192 |
+
# Create the bar chart
|
193 |
+
chart = alt.Chart(df_chart).mark_bar().encode(
|
194 |
+
x=alt.X('Model:N',
|
195 |
+
sort=alt.EncodingSortField(field='Score', order='descending'),
|
196 |
+
axis=alt.Axis(labelAngle=-45)),
|
197 |
+
y=alt.Y('Score:Q',
|
198 |
+
scale=alt.Scale(domain=[0, 100]),
|
199 |
+
axis=alt.Axis(title='Score (%)')),
|
200 |
+
color=alt.Color('Type:N',
|
201 |
+
scale=alt.Scale(domain=['Evaluated', 'Baseline'],
|
202 |
+
range=['#4ECDC4', '#FFA726'])),
|
203 |
+
tooltip=['Model', 'Score', 'Type']
|
204 |
+
).properties(
|
205 |
+
title=title,
|
206 |
+
width=400,
|
207 |
+
height=300
|
208 |
+
)
|
209 |
+
|
210 |
+
# Add value labels
|
211 |
+
text = chart.mark_text(
|
212 |
+
align='center',
|
213 |
+
baseline='bottom',
|
214 |
+
dy=-5
|
215 |
+
).encode(
|
216 |
+
text=alt.Text('Score:Q', format='.1f')
|
217 |
+
)
|
218 |
+
|
219 |
+
return chart + text
|
220 |
+
|
221 |
+
def main():
|
222 |
+
st.title("🎯 Grounding Benchmark Leaderboard")
|
223 |
+
st.markdown("Visualization of model performance on grounding benchmarks")
|
224 |
+
|
225 |
+
# Fetch data
|
226 |
+
with st.spinner("Loading leaderboard data..."):
|
227 |
+
df = fetch_leaderboard_data()
|
228 |
+
|
229 |
+
if df.empty:
|
230 |
+
st.warning("No data available in the leaderboard.")
|
231 |
+
return
|
232 |
+
|
233 |
+
# Sidebar filters
|
234 |
+
st.sidebar.header("Filters")
|
235 |
+
|
236 |
+
# Dataset filter
|
237 |
+
datasets = sorted(df['dataset'].unique())
|
238 |
+
selected_dataset = st.sidebar.selectbox("Select Dataset", datasets)
|
239 |
+
st.session_state['selected_dataset'] = selected_dataset
|
240 |
+
|
241 |
+
# Filter data
|
242 |
+
filtered_df = df[df['dataset'] == selected_dataset]
|
243 |
+
|
244 |
+
# Model filter (optional)
|
245 |
+
models = ['All'] + sorted(filtered_df['model'].unique())
|
246 |
+
selected_model = st.sidebar.selectbox("Select Model", models)
|
247 |
+
|
248 |
+
if selected_model != 'All':
|
249 |
+
filtered_df = filtered_df[filtered_df['model'] == selected_model]
|
250 |
+
|
251 |
+
# Main content
|
252 |
+
st.header(f"Results for {selected_dataset}")
|
253 |
+
|
254 |
+
# Overall metrics
|
255 |
+
col1, col2, col3 = st.columns(3)
|
256 |
+
with col1:
|
257 |
+
st.metric("Models Evaluated", len(filtered_df))
|
258 |
+
with col2:
|
259 |
+
if not filtered_df.empty:
|
260 |
+
best_acc = filtered_df['overall_accuracy'].max()
|
261 |
+
best_model = filtered_df[filtered_df['overall_accuracy'] == best_acc]['model'].iloc[0]
|
262 |
+
st.metric("Best Overall Accuracy", f"{best_acc:.1f}%", help=f"Model: {best_model}")
|
263 |
+
with col3:
|
264 |
+
total_samples = filtered_df['total_samples'].sum()
|
265 |
+
st.metric("Total Samples Evaluated", f"{total_samples:,}")
|
266 |
+
|
267 |
+
# Parse UI type metrics
|
268 |
+
ui_metrics_df = parse_ui_type_metrics(filtered_df, selected_dataset)
|
269 |
+
|
270 |
+
if not ui_metrics_df.empty and 'screenspot' in selected_dataset.lower():
|
271 |
+
st.subheader("Performance by UI Type")
|
272 |
+
|
273 |
+
# Create charts in a grid
|
274 |
+
col1, col2 = st.columns(2)
|
275 |
+
|
276 |
+
with col1:
|
277 |
+
# Overall Average
|
278 |
+
chart = create_bar_chart(ui_metrics_df, 'overall', 'Overall Average')
|
279 |
+
if chart:
|
280 |
+
st.altair_chart(chart, use_container_width=True)
|
281 |
+
|
282 |
+
# Desktop Average
|
283 |
+
chart = create_bar_chart(ui_metrics_df, 'desktop_avg', 'Desktop Average')
|
284 |
+
if chart:
|
285 |
+
st.altair_chart(chart, use_container_width=True)
|
286 |
+
|
287 |
+
# Text Average
|
288 |
+
chart = create_bar_chart(ui_metrics_df, 'text_avg', 'Text Average (UI-Type)')
|
289 |
+
if chart:
|
290 |
+
st.altair_chart(chart, use_container_width=True)
|
291 |
+
|
292 |
+
with col2:
|
293 |
+
# Web Average
|
294 |
+
chart = create_bar_chart(ui_metrics_df, 'web_avg', 'Web Average')
|
295 |
+
if chart:
|
296 |
+
st.altair_chart(chart, use_container_width=True)
|
297 |
+
|
298 |
+
# Icon Average
|
299 |
+
chart = create_bar_chart(ui_metrics_df, 'icon_avg', 'Icon Average (UI-Type)')
|
300 |
+
if chart:
|
301 |
+
st.altair_chart(chart, use_container_width=True)
|
302 |
+
|
303 |
+
# Detailed breakdown
|
304 |
+
with st.expander("Detailed UI Type Breakdown"):
|
305 |
+
# Create a heatmap-style table
|
306 |
+
detailed_metrics = []
|
307 |
+
for _, row in ui_metrics_df.iterrows():
|
308 |
+
detailed_metrics.append({
|
309 |
+
'Model': row['model'],
|
310 |
+
'Desktop Text': f"{row['desktop_text']:.1f}%",
|
311 |
+
'Desktop Icon': f"{row['desktop_icon']:.1f}%",
|
312 |
+
'Web Text': f"{row['web_text']:.1f}%",
|
313 |
+
'Web Icon': f"{row['web_icon']:.1f}%",
|
314 |
+
'Overall': f"{row['overall']:.1f}%"
|
315 |
+
})
|
316 |
+
|
317 |
+
if detailed_metrics:
|
318 |
+
st.dataframe(pd.DataFrame(detailed_metrics), use_container_width=True)
|
319 |
+
|
320 |
+
else:
|
321 |
+
# For non-ScreenSpot datasets, show a simple bar chart
|
322 |
+
st.subheader("Model Performance")
|
323 |
+
|
324 |
+
chart_data = filtered_df[['model', 'overall_accuracy']].copy()
|
325 |
+
chart_data.columns = ['Model', 'Accuracy']
|
326 |
+
|
327 |
+
chart = alt.Chart(chart_data).mark_bar().encode(
|
328 |
+
x=alt.X('Model:N', sort='-y', axis=alt.Axis(labelAngle=-45)),
|
329 |
+
y=alt.Y('Accuracy:Q', scale=alt.Scale(domain=[0, 100])),
|
330 |
+
tooltip=['Model', 'Accuracy']
|
331 |
+
).properties(
|
332 |
+
width=800,
|
333 |
+
height=400
|
334 |
+
)
|
335 |
+
|
336 |
+
st.altair_chart(chart, use_container_width=True)
|
337 |
+
|
338 |
+
# Model details table
|
339 |
+
with st.expander("Model Details"):
|
340 |
+
display_df = filtered_df[['model', 'overall_accuracy', 'total_samples', 'checkpoint_steps', 'training_loss', 'timestamp']].copy()
|
341 |
+
display_df.columns = ['Model', 'Accuracy (%)', 'Samples', 'Checkpoint Steps', 'Training Loss', 'Timestamp']
|
342 |
+
display_df['Accuracy (%)'] = display_df['Accuracy (%)'].apply(lambda x: f"{x:.2f}")
|
343 |
+
display_df['Training Loss'] = display_df['Training Loss'].apply(lambda x: f"{x:.4f}" if pd.notna(x) else "N/A")
|
344 |
+
st.dataframe(display_df, use_container_width=True)
|
345 |
+
|
346 |
+
# Raw data viewer
|
347 |
+
with st.expander("Raw Data"):
|
348 |
+
if selected_model != 'All' and len(filtered_df) == 1:
|
349 |
+
st.json(filtered_df.iloc[0]['raw_data'])
|
350 |
+
else:
|
351 |
+
st.info("Select a specific model to view raw data")
|
352 |
+
|
353 |
+
if __name__ == "__main__":
|
354 |
+
main()
|