Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
agent.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
from langchain.schema import HumanMessage, AIMessage, SystemMessage
|
2 |
from langchain_openai import ChatOpenAI
|
3 |
from langchain_core.messages import AnyMessage, SystemMessage
|
@@ -23,84 +25,208 @@ from langchain_huggingface import (
|
|
23 |
HuggingFaceEmbeddings,
|
24 |
)
|
25 |
|
|
|
|
|
|
|
26 |
|
27 |
load_dotenv()
|
28 |
|
29 |
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
@tool
|
35 |
-
def
|
36 |
-
"""
|
|
|
37 |
|
38 |
Args:
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
@tool
|
51 |
-
def
|
52 |
-
"""
|
|
|
53 |
|
54 |
Args:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
@tool
|
67 |
-
def
|
68 |
-
"""
|
|
|
69 |
|
70 |
Args:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
# llm = ChatHuggingFace(
|
91 |
# llm=HuggingFaceEndpoint(
|
92 |
# # repo_id="microsoft/Phi-3-mini-4k-instruct",
|
93 |
-
# repo_id="
|
94 |
# temperature=0,
|
95 |
# # huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"],
|
96 |
# ),
|
97 |
# verbose=True,
|
98 |
# )
|
99 |
-
|
|
|
|
|
100 |
tools = [
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
104 |
# search_tool,
|
105 |
]
|
106 |
# Bind the tools to the LLM
|
@@ -108,30 +234,63 @@ model_with_tools = llm.bind_tools(tools)
|
|
108 |
tool_node = ToolNode(tools)
|
109 |
|
110 |
|
111 |
-
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
last_message = messages[-1]
|
116 |
-
if last_message.tool_calls:
|
117 |
-
return "tools"
|
118 |
-
return END
|
119 |
-
|
120 |
-
def call_model(state: MessagesState):
|
121 |
-
system_message = SystemMessage(
|
122 |
-
content=f"""
|
123 |
-
You are a helpful assistant tasked with answering questions using a set of tools.
|
124 |
-
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
125 |
-
FINAL ANSWER: [YOUR FINAL ANSWER].
|
126 |
-
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
127 |
-
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """
|
128 |
-
)
|
129 |
|
130 |
-
messages = [system_message] + state["messages"]
|
131 |
-
print("Messages to LLM:", messages)
|
132 |
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
# Define the state graph
|
137 |
workflow = StateGraph(MessagesState)
|
@@ -139,20 +298,18 @@ def build_agent_workflow():
|
|
139 |
workflow.add_node("tools", tool_node)
|
140 |
|
141 |
workflow.add_edge(START, "agent")
|
142 |
-
workflow.add_conditional_edges("agent",
|
143 |
workflow.add_edge("tools", "agent")
|
144 |
-
|
145 |
app = workflow.compile()
|
146 |
-
|
147 |
return app
|
148 |
|
149 |
|
150 |
-
if __name__ == "__main__":
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
1 |
+
import tempfile
|
2 |
+
from urllib.parse import urlparse
|
3 |
from langchain.schema import HumanMessage, AIMessage, SystemMessage
|
4 |
from langchain_openai import ChatOpenAI
|
5 |
from langchain_core.messages import AnyMessage, SystemMessage
|
|
|
25 |
HuggingFaceEmbeddings,
|
26 |
)
|
27 |
|
28 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
29 |
+
import requests
|
30 |
+
from huggingface_hub import login
|
31 |
|
32 |
load_dotenv()
|
33 |
|
34 |
|
35 |
+
@tool
|
36 |
+
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
|
37 |
+
"""
|
38 |
+
Save content to a temporary file and return the path.
|
39 |
+
Useful for processing files from the GAIA API.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
content: The content to save to the file
|
43 |
+
filename: Optional filename, will generate a random name if not provided
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
Path to the saved file
|
47 |
+
"""
|
48 |
+
temp_dir = tempfile.gettempdir()
|
49 |
+
if filename is None:
|
50 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
51 |
+
filepath = temp_file.name
|
52 |
+
else:
|
53 |
+
filepath = os.path.join(temp_dir, filename)
|
54 |
+
|
55 |
+
# Write content to the file
|
56 |
+
with open(filepath, "w") as f:
|
57 |
+
f.write(content)
|
58 |
+
|
59 |
+
return f"File saved to {filepath}. You can read this file to process its contents."
|
60 |
|
61 |
|
62 |
@tool
|
63 |
+
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
|
64 |
+
"""
|
65 |
+
Download a file from a URL and save it to a temporary location.
|
66 |
|
67 |
Args:
|
68 |
+
url: The URL to download from
|
69 |
+
filename: Optional filename, will generate one based on URL if not provided
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
Path to the downloaded file
|
73 |
+
"""
|
74 |
+
try:
|
75 |
+
# Parse URL to get filename if not provided
|
76 |
+
if not filename:
|
77 |
+
path = urlparse(url).path
|
78 |
+
filename = os.path.basename(path)
|
79 |
+
if not filename:
|
80 |
+
# Generate a random name if we couldn't extract one
|
81 |
+
import uuid
|
82 |
+
|
83 |
+
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
|
84 |
+
|
85 |
+
# Create temporary file
|
86 |
+
temp_dir = tempfile.gettempdir()
|
87 |
+
filepath = os.path.join(temp_dir, filename)
|
88 |
+
|
89 |
+
# Download the file
|
90 |
+
response = requests.get(url, stream=True)
|
91 |
+
response.raise_for_status()
|
92 |
+
|
93 |
+
# Save the file
|
94 |
+
with open(filepath, "wb") as f:
|
95 |
+
for chunk in response.iter_content(chunk_size=8192):
|
96 |
+
f.write(chunk)
|
97 |
+
|
98 |
+
return f"File downloaded to {filepath}. You can now process this file."
|
99 |
+
except Exception as e:
|
100 |
+
return f"Error downloading file: {str(e)}"
|
101 |
|
102 |
|
103 |
@tool
|
104 |
+
def extract_text_from_image(image_path: str) -> str:
|
105 |
+
"""
|
106 |
+
Extract text from an image using pytesseract (if available).
|
107 |
|
108 |
Args:
|
109 |
+
image_path: Path to the image file
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
Extracted text or error message
|
113 |
+
"""
|
114 |
+
try:
|
115 |
+
# Try to import pytesseract
|
116 |
+
import pytesseract
|
117 |
+
from PIL import Image
|
118 |
+
|
119 |
+
# Open the image
|
120 |
+
image = Image.open(image_path)
|
121 |
+
|
122 |
+
# Extract text
|
123 |
+
text = pytesseract.image_to_string(image)
|
124 |
+
|
125 |
+
return f"Extracted text from image:\n\n{text}"
|
126 |
+
except ImportError:
|
127 |
+
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
|
128 |
+
except Exception as e:
|
129 |
+
return f"Error extracting text from image: {str(e)}"
|
130 |
|
131 |
|
132 |
@tool
|
133 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
134 |
+
"""
|
135 |
+
Analyze a CSV file using pandas and answer a question about it.
|
136 |
|
137 |
Args:
|
138 |
+
file_path: Path to the CSV file
|
139 |
+
query: Question about the data
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
Analysis result or error message
|
143 |
+
"""
|
144 |
+
try:
|
145 |
+
import pandas as pd
|
146 |
+
|
147 |
+
# Read the CSV file
|
148 |
+
df = pd.read_csv(file_path)
|
149 |
+
|
150 |
+
# Run various analyses based on the query
|
151 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
152 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
153 |
+
|
154 |
+
# Add summary statistics
|
155 |
+
result += "Summary statistics:\n"
|
156 |
+
result += str(df.describe())
|
157 |
+
|
158 |
+
return result
|
159 |
+
except ImportError:
|
160 |
+
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
|
161 |
+
except Exception as e:
|
162 |
+
return f"Error analyzing CSV file: {str(e)}"
|
163 |
+
|
164 |
+
|
165 |
+
@tool
|
166 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
167 |
+
"""
|
168 |
+
Analyze an Excel file using pandas and answer a question about it.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
file_path: Path to the Excel file
|
172 |
+
query: Question about the data
|
173 |
+
|
174 |
+
Returns:
|
175 |
+
Analysis result or error message
|
176 |
+
"""
|
177 |
+
try:
|
178 |
+
import pandas as pd
|
179 |
+
|
180 |
+
# Read the Excel file
|
181 |
+
df = pd.read_excel(file_path)
|
182 |
+
|
183 |
+
# Run various analyses based on the query
|
184 |
+
result = (
|
185 |
+
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
186 |
+
)
|
187 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
188 |
+
|
189 |
+
# Add summary statistics
|
190 |
+
result += "Summary statistics:\n"
|
191 |
+
result += str(df.describe())
|
192 |
+
|
193 |
+
return result
|
194 |
+
except ImportError:
|
195 |
+
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
196 |
+
except Exception as e:
|
197 |
+
return f"Error analyzing Excel file: {str(e)}"
|
198 |
+
|
199 |
+
|
200 |
+
# Initialize the DuckDuckGo search tool
|
201 |
+
search_tool = DuckDuckGoSearchResults()
|
202 |
+
|
203 |
+
|
204 |
+
# # Load LLM model
|
205 |
+
# llm = ChatOpenAI(
|
206 |
+
# model="gpt-4o",
|
207 |
+
# base_url="https://models.inference.ai.azure.com",
|
208 |
+
# api_key=os.environ["GITHUB_TOKEN"],
|
209 |
+
# temperature=0.2,
|
210 |
+
# max_tokens=4096,
|
211 |
+
# )
|
212 |
# llm = ChatHuggingFace(
|
213 |
# llm=HuggingFaceEndpoint(
|
214 |
# # repo_id="microsoft/Phi-3-mini-4k-instruct",
|
215 |
+
# repo_id="meta-llama/Llama-3-70B-Instruct",
|
216 |
# temperature=0,
|
217 |
# # huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"],
|
218 |
# ),
|
219 |
# verbose=True,
|
220 |
# )
|
221 |
+
llm = ChatGoogleGenerativeAI(
|
222 |
+
model="gemini-2.0-flash-exp", google_api_key=os.environ["GOOGLE_API_KEY"]
|
223 |
+
)
|
224 |
tools = [
|
225 |
+
analyze_csv_file,
|
226 |
+
analyze_excel_file,
|
227 |
+
extract_text_from_image,
|
228 |
+
download_file_from_url,
|
229 |
+
save_and_read_file,
|
230 |
# search_tool,
|
231 |
]
|
232 |
# Bind the tools to the LLM
|
|
|
234 |
tool_node = ToolNode(tools)
|
235 |
|
236 |
|
237 |
+
class AgentState(TypedDict):
|
238 |
+
"""State of the agent."""
|
239 |
|
240 |
+
input_file: Optional[str]
|
241 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
|
|
|
|
243 |
|
244 |
+
def build_agent_workflow():
|
245 |
+
"""Build the agent workflow."""
|
246 |
+
|
247 |
+
def call_model(state: AgentState):
|
248 |
+
print("State:", state["messages"])
|
249 |
+
question = state["messages"][-1].content
|
250 |
+
context = f"""
|
251 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
252 |
+
"""
|
253 |
+
# System message
|
254 |
+
if state.get("input_file"):
|
255 |
+
try:
|
256 |
+
with open(state.get("input_file"), "r") as f:
|
257 |
+
file_content = f.read()
|
258 |
+
print("File content:", file_content)
|
259 |
+
|
260 |
+
# Determine file type from extension
|
261 |
+
file_ext = os.path.splitext(state.get("input_file"))[1].lower()
|
262 |
+
context = f"""
|
263 |
+
Question: {question}
|
264 |
+
This question has an associated file. Here is the file content:
|
265 |
+
```{file_ext}
|
266 |
+
{file_content}
|
267 |
+
```
|
268 |
+
Analyze the file content above to answer the question."""
|
269 |
+
except Exception as file_e:
|
270 |
+
context = f""" Question: {state["message"]}
|
271 |
+
This question has an associated file at path: {state.get("input_file")}
|
272 |
+
However, there was an error reading the file: {file_e}
|
273 |
+
You can still try to answer the question based on the information provided.
|
274 |
+
"""
|
275 |
+
|
276 |
+
if question.startswith(".") or ".rewsna eht sa" in question:
|
277 |
+
context = f"""
|
278 |
+
This question appears to be in reversed text. Here's the reversed version:
|
279 |
+
{state['message'][::-1]}
|
280 |
+
Now answer the question above. Remember to format your answer exactly as requested.
|
281 |
+
"""
|
282 |
+
system_prompt = SystemMessage(
|
283 |
+
f"""{context}
|
284 |
+
When answering, provide ONLY the precise answer requested.
|
285 |
+
Do not include explanations, steps, reasoning, or additional text.
|
286 |
+
Be direct and specific. GAIA benchmark requires exact matching answers.
|
287 |
+
For example, if asked "What is the capital of France?", respond simply with "Paris".
|
288 |
+
"""
|
289 |
+
)
|
290 |
+
return {
|
291 |
+
"messages": [model_with_tools.invoke([system_prompt] + state["messages"])],
|
292 |
+
# "input_file": state["input_file"],
|
293 |
+
}
|
294 |
|
295 |
# Define the state graph
|
296 |
workflow = StateGraph(MessagesState)
|
|
|
298 |
workflow.add_node("tools", tool_node)
|
299 |
|
300 |
workflow.add_edge(START, "agent")
|
301 |
+
workflow.add_conditional_edges("agent", tools_condition)
|
302 |
workflow.add_edge("tools", "agent")
|
|
|
303 |
app = workflow.compile()
|
|
|
304 |
return app
|
305 |
|
306 |
|
307 |
+
# if __name__ == "__main__":
|
308 |
+
# question = "Who nominated the only Featured Article on English Wikipedia about a dinosaur that was promoted in November 2016?"
|
309 |
+
# # Build the graph
|
310 |
+
# graph = build_agent_workflow()
|
311 |
+
# # Run the graph
|
312 |
+
# messages = [HumanMessage(content=question)]
|
313 |
+
# messages = graph.invoke({"messages": messages, "input_file": None})
|
314 |
+
# for m in messages["messages"]:
|
315 |
+
# m.pretty_print()
|
app.py
CHANGED
@@ -21,9 +21,9 @@ class BasicAgent:
|
|
21 |
def __call__(self, question: str) -> str:
|
22 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
23 |
messages = [HumanMessage(content=question)]
|
24 |
-
messages = self.workflow.invoke({"messages": messages})
|
25 |
answer = messages["messages"][-1].content
|
26 |
-
return answer
|
27 |
# fixed_answer = "This is a default answer."
|
28 |
# print(f"Agent returning fixed answer: {fixed_answer}")
|
29 |
# return fixed_answer
|
|
|
21 |
def __call__(self, question: str) -> str:
|
22 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
23 |
messages = [HumanMessage(content=question)]
|
24 |
+
messages = self.workflow.invoke({"messages": messages, "input_file": None})
|
25 |
answer = messages["messages"][-1].content
|
26 |
+
return answer
|
27 |
# fixed_answer = "This is a default answer."
|
28 |
# print(f"Agent returning fixed answer: {fixed_answer}")
|
29 |
# return fixed_answer
|