File size: 3,372 Bytes
7dbb743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9f65b9
 
 
 
 
 
 
7dbb743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from flask import Flask, render_template, request, redirect, url_for
from joblib import load
import pandas as pd
import re
from customFunctions import *
import json
import datetime

pd.set_option('display.max_colwidth', 1000)

PIPELINES = [
    {
        'id': 1,
        'name': 'Baseline',
        'pipeline': load("pipeline_ex1_s1.joblib")
    },
    {
        'id': 2,
        'name': 'Trained on a FeedForward NN',
        'pipeline': load("pipeline_ex1_s2.joblib")
    },
    {
        'id': 3,
        'name': 'Trained on a CRF',
        'pipeline': load("pipeline_ex1_s3.joblib")
    },
    #{
     #   'id': 4,
      #  'name': 'Trained on a small dataset',
       # 'pipeline': load("pipeline_ex2_s1.joblib")
    #},
    #{
     #   'id': 5,
      #  'name': 'Trained on a large dataset',
       # 'pipeline': load("pipeline_ex2_s2.joblib")
    #},
    #{
     #   'id': 6,
      #  'name': 'Embedded using TFIDF',
       # 'pipeline': load("pipeline_ex3_s1.joblib")
    #},
    #{
     #   'id': 7,
      #  'name': 'Embedded using ?',
       # 'pipeline': load("pipeline_ex3_s2.joblib")
    #},
    
]

pipeline_metadata = [{'id': p['id'], 'name': p['name']} for p in PIPELINES]

def get_pipeline_by_id(pipelines, pipeline_id):
    return next((p['pipeline'] for p in pipelines if p['id'] == pipeline_id), None)

def get_name_by_id(pipelines, pipeline_id):
    return next((p['name'] for p in pipelines if p['id'] == pipeline_id), None)



def requestResults(text, pipeline):
    labels = pipeline.predict(text)
    print(labels.ndim)
    if labels.ndim != 1:
        flattened_predictions = []
        for sentence in labels:
            for tag in sentence:
                flattened_predictions.append(tag)
        labels = flattened_predictions
    print(labels)
    labels = [int(label) for label in labels]
    tag_encoder = LabelEncoder()
    tag_encoder.fit(['B-AC', 'O', 'B-LF', 'I-LF'])
    decoded_labels = tag_encoder.inverse_transform(labels)
    return decoded_labels

LOG_FILE = "usage_log.jsonl"  # Each line is a JSON object

def log_interaction(user_input, model_name, predictions):
    print("====== Interaction Log ======")
    print("Timestamp:", datetime.datetime.utcnow().isoformat())
    print("Model:", model_name)
    print("Input:", user_input)
    print("Predictions:", predictions)
    print("=============================")



app = Flask(__name__)


@app.route('/')
def index():
    return render_template('index.html', pipelines= pipeline_metadata)


@app.route('/', methods=['POST'])
def get_data():
    if request.method == 'POST':

        text = request.form['search']
        tokens = re.findall(r"\w+|[^\w\s]", text)
        tokens_fomatted = pd.Series([pd.Series(tokens)])

        pipeline_id = int(request.form['pipeline_select'])
        pipeline = get_pipeline_by_id(PIPELINES, pipeline_id)
        name = get_name_by_id(PIPELINES, pipeline_id)
        
        labels = requestResults(tokens_fomatted, pipeline)
        results = dict(zip(tokens, labels))

        print(f"[INFO] Model: {name}")
        print(f"[INFO] Input: {text}")
        print(f"[INFO] Output: {results}")


        return render_template('index.html', results=results, name=name, pipelines= pipeline_metadata)


if __name__ == '__main__':
    app.run(host="0.0.0.0", port=7860)

#if __name__ == '__main__':
#app.run(host="0.0.0.0", port=7860)