File size: 3,629 Bytes
7dbb743
 
 
 
344daf4
7dbb743
 
f8828b6
7dbb743
 
 
f8828b6
 
 
 
 
 
 
 
 
 
7dbb743
 
 
 
f8828b6
7dbb743
 
 
 
f8828b6
7dbb743
 
 
 
f8828b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dbb743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8828b6
 
 
7dbb743
f8828b6
 
 
a9f65b9
f8828b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dbb743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8828b6
7dbb743
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from flask import Flask, render_template, request, redirect, url_for
from joblib import load
import pandas as pd
import re
from customFunctions import *
import json
import datetime
import numpy as np

pd.set_option('display.max_colwidth', 1000)

import torch

# Patch torch.load to always load on CPU
original_torch_load = torch.load
def cpu_load(*args, **kwargs):
    return original_torch_load(*args, map_location=torch.device('cpu'), **kwargs)

torch.load = cpu_load


PIPELINES = [
    {
        'id': 1,
        'name': 'Baseline',
        'pipeline': load("pipelines/pipeline_ex1_s1.joblib")
    },
    {
        'id': 2,
        'name': 'Trained on a FeedForward NN',
        'pipeline': load("pipelines/pipeline_ex1_s2.joblib")
    },
    {
        'id': 3,
        'name': 'Trained on a CRF',
        'pipeline': load("pipelines/pipeline_ex1_s3.joblib")
    },
    {
        'id': 4,
        'name': 'Trained on a small dataset',
        'pipeline': load("pipelines/pipeline_ex2_s3.joblib")
    },
    {
        'id': 5,
        'name': 'Trained on a large dataset',
        'pipeline': load("pipelines/pipeline_ex2_s2.joblib")
    },
    {
        'id': 6,
        'name': 'Embedded using TFIDF',
        'pipeline': load("pipelines/pipeline_ex3_s2.joblib")
    },
    {
        'id': 7,
        'name': 'Embedded using GloVe',
        'pipeline': load("pipelines/pipeline_ex3_s3.joblib")
    },
    {
         'id': 8,
         'name': 'Embedded using Bio2Vec',
         'pipeline': load("pipelines/pipeline_ex3_s4.joblib")
    },
    
]

pipeline_metadata = [{'id': p['id'], 'name': p['name']} for p in PIPELINES]

def get_pipeline_by_id(pipelines, pipeline_id):
    return next((p['pipeline'] for p in pipelines if p['id'] == pipeline_id), None)

def get_name_by_id(pipelines, pipeline_id):
    return next((p['name'] for p in pipelines if p['id'] == pipeline_id), None)



def requestResults(text, pipeline):
    labels = pipeline.predict(text)
    if isinstance(labels, np.ndarray):
        labels = labels.tolist()
    return labels[0]

import os

LOG_FILE = "/tmp/usage_log.jsonl"  # Use temporary file path for Hugging Face Spaces

def log_interaction(user_input, model_name, predictions):
    log_entry = {
        "timestamp": datetime.datetime.utcnow().isoformat(),
        "model": model_name,
        "user_input": user_input,
        "predictions": predictions
    }

    try:
        os.makedirs(os.path.dirname(LOG_FILE), exist_ok=True)  # Ensure the directory exists
        with open(LOG_FILE, "a") as log_file:
            log_file.write(json.dumps(log_entry) + "\n")
    except Exception as e:
        print(f"Error writing to log: {e}")
        # You could also return a response with the error, or raise an error to stop the process


app = Flask(__name__)


@app.route('/')
def index():
    return render_template('index.html', pipelines= pipeline_metadata)


@app.route('/', methods=['POST'])
def get_data():
    if request.method == 'POST':

        text = request.form['search']
        tokens = re.findall(r"\w+|[^\w\s]", text)
        tokens_fomatted = pd.Series([pd.Series(tokens)])

        pipeline_id = int(request.form['pipeline_select'])
        pipeline = get_pipeline_by_id(PIPELINES, pipeline_id)
        name = get_name_by_id(PIPELINES, pipeline_id)
        
        labels = requestResults(tokens_fomatted, pipeline)
        results = dict(zip(tokens, labels))

        log_interaction(text, name, results)

        return render_template('index.html', results=results, name=name, pipelines= pipeline_metadata)


if __name__ == '__main__':
    app.run(host="0.0.0.0", port=7860)