Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +121 -0
- customFunctions.py +470 -0
- performance_test.py +64 -0
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request, redirect, url_for
|
2 |
+
from joblib import load
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
+
from customFunctions import *
|
6 |
+
import json
|
7 |
+
import datetime
|
8 |
+
|
9 |
+
pd.set_option('display.max_colwidth', 1000)
|
10 |
+
|
11 |
+
PIPELINES = [
|
12 |
+
{
|
13 |
+
'id': 1,
|
14 |
+
'name': 'Baseline',
|
15 |
+
'pipeline': load("pipeline_ex1_s1.joblib")
|
16 |
+
},
|
17 |
+
{
|
18 |
+
'id': 2,
|
19 |
+
'name': 'Trained on a FeedForward NN',
|
20 |
+
'pipeline': load("pipeline_ex1_s2.joblib")
|
21 |
+
},
|
22 |
+
{
|
23 |
+
'id': 3,
|
24 |
+
'name': 'Trained on a CRF',
|
25 |
+
'pipeline': load("pipeline_ex1_s3.joblib")
|
26 |
+
},
|
27 |
+
#{
|
28 |
+
# 'id': 4,
|
29 |
+
# 'name': 'Trained on a small dataset',
|
30 |
+
# 'pipeline': load("pipeline_ex2_s1.joblib")
|
31 |
+
#},
|
32 |
+
#{
|
33 |
+
# 'id': 5,
|
34 |
+
# 'name': 'Trained on a large dataset',
|
35 |
+
# 'pipeline': load("pipeline_ex2_s2.joblib")
|
36 |
+
#},
|
37 |
+
#{
|
38 |
+
# 'id': 6,
|
39 |
+
# 'name': 'Embedded using TFIDF',
|
40 |
+
# 'pipeline': load("pipeline_ex3_s1.joblib")
|
41 |
+
#},
|
42 |
+
#{
|
43 |
+
# 'id': 7,
|
44 |
+
# 'name': 'Embedded using ?',
|
45 |
+
# 'pipeline': load("pipeline_ex3_s2.joblib")
|
46 |
+
#},
|
47 |
+
|
48 |
+
]
|
49 |
+
|
50 |
+
pipeline_metadata = [{'id': p['id'], 'name': p['name']} for p in PIPELINES]
|
51 |
+
|
52 |
+
def get_pipeline_by_id(pipelines, pipeline_id):
|
53 |
+
return next((p['pipeline'] for p in pipelines if p['id'] == pipeline_id), None)
|
54 |
+
|
55 |
+
def get_name_by_id(pipelines, pipeline_id):
|
56 |
+
return next((p['name'] for p in pipelines if p['id'] == pipeline_id), None)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def requestResults(text, pipeline):
|
61 |
+
labels = pipeline.predict(text)
|
62 |
+
print(labels.ndim)
|
63 |
+
if labels.ndim != 1:
|
64 |
+
flattened_predictions = []
|
65 |
+
for sentence in labels:
|
66 |
+
for tag in sentence:
|
67 |
+
flattened_predictions.append(tag)
|
68 |
+
labels = flattened_predictions
|
69 |
+
print(labels)
|
70 |
+
labels = [int(label) for label in labels]
|
71 |
+
tag_encoder = LabelEncoder()
|
72 |
+
tag_encoder.fit(['B-AC', 'O', 'B-LF', 'I-LF'])
|
73 |
+
decoded_labels = tag_encoder.inverse_transform(labels)
|
74 |
+
return decoded_labels
|
75 |
+
|
76 |
+
LOG_FILE = "usage_log.jsonl" # Each line is a JSON object
|
77 |
+
|
78 |
+
def log_interaction(user_input, model_name, predictions):
|
79 |
+
log_entry = {
|
80 |
+
"timestamp": datetime.datetime.utcnow().isoformat(),
|
81 |
+
"user_input": user_input,
|
82 |
+
"model": model_name,
|
83 |
+
"predictions": predictions
|
84 |
+
}
|
85 |
+
with open(LOG_FILE, "a") as f:
|
86 |
+
f.write(json.dumps(log_entry) + "\n")
|
87 |
+
|
88 |
+
|
89 |
+
app = Flask(__name__)
|
90 |
+
|
91 |
+
|
92 |
+
@app.route('/')
|
93 |
+
def index():
|
94 |
+
return render_template('index.html', pipelines= pipeline_metadata)
|
95 |
+
|
96 |
+
|
97 |
+
@app.route('/', methods=['POST'])
|
98 |
+
def get_data():
|
99 |
+
if request.method == 'POST':
|
100 |
+
|
101 |
+
text = request.form['search']
|
102 |
+
tokens = re.findall(r"\w+|[^\w\s]", text)
|
103 |
+
tokens_fomatted = pd.Series([pd.Series(tokens)])
|
104 |
+
|
105 |
+
pipeline_id = int(request.form['pipeline_select'])
|
106 |
+
pipeline = get_pipeline_by_id(PIPELINES, pipeline_id)
|
107 |
+
name = get_name_by_id(PIPELINES, pipeline_id)
|
108 |
+
|
109 |
+
labels = requestResults(tokens_fomatted, pipeline)
|
110 |
+
results = dict(zip(tokens, labels))
|
111 |
+
|
112 |
+
log_interaction(text, name, results)
|
113 |
+
|
114 |
+
return render_template('index.html', results=results, name=name, pipelines= pipeline_metadata)
|
115 |
+
|
116 |
+
|
117 |
+
if __name__ == '__main__':
|
118 |
+
app.run(host="0.0.0.0", port=7860)
|
119 |
+
|
120 |
+
#if __name__ == '__main__':
|
121 |
+
#app.run(host="0.0.0.0", port=7860)
|
customFunctions.py
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.optim as optim
|
7 |
+
#from transformers import BertTokenizer, BertModel
|
8 |
+
from sklearn.metrics import accuracy_score, f1_score, classification_report
|
9 |
+
import sklearn_crfsuite
|
10 |
+
from sklearn_crfsuite import metrics
|
11 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
+
from gensim.models import Word2Vec
|
13 |
+
from sklearn.pipeline import Pipeline
|
14 |
+
from sklearn.preprocessing import LabelEncoder
|
15 |
+
from torch.utils.data import Dataset, DataLoader
|
16 |
+
from torch.nn.utils.rnn import pad_sequence
|
17 |
+
from sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin
|
18 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
EMBEDDING_DIM = 100
|
23 |
+
PAD_VALUE= -1
|
24 |
+
MAX_LENGTH = 376
|
25 |
+
EMBEDDING_DIM = 100
|
26 |
+
BATCH_SIZE = 16
|
27 |
+
|
28 |
+
class preprocess_sentences():
|
29 |
+
def __init__(self):
|
30 |
+
pass
|
31 |
+
|
32 |
+
def fit(self, X, y=None):
|
33 |
+
print('PREPROCESSING')
|
34 |
+
return self
|
35 |
+
|
36 |
+
def transform(self, X):
|
37 |
+
# X = train['tokens'], y =
|
38 |
+
sentences = X.apply(lambda x: x.tolist()).tolist()
|
39 |
+
print('--> Preprocessing complete \n', flush=True)
|
40 |
+
return sentences
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
class Word2VecTransformer():
|
45 |
+
def __init__(self, vector_size = 100, window = 5, min_count = 1, workers = 1, embedding_dim=EMBEDDING_DIM):
|
46 |
+
self.model = None
|
47 |
+
self.vector_size = vector_size
|
48 |
+
self.window = window
|
49 |
+
self.min_count = min_count
|
50 |
+
self.workers = workers
|
51 |
+
self.embedding_dim = embedding_dim
|
52 |
+
|
53 |
+
def fit(self, X, y):
|
54 |
+
# https://stackoverflow.com/questions/17242456/python-print-sys-stdout-write-not-visible-when-using-logging
|
55 |
+
# https://stackoverflow.com/questions/230751/how-can-i-flush-the-output-of-the-print-function
|
56 |
+
print('WORD2VEC:', flush=True)
|
57 |
+
# This fits the word2vec model
|
58 |
+
self.model = Word2Vec(sentences = X, vector_size=self.vector_size, window=self.window
|
59 |
+
, min_count=self.min_count, workers=self.workers)
|
60 |
+
print('--> Word2Vec Fitted', flush=True)
|
61 |
+
return self
|
62 |
+
|
63 |
+
def transform(self, X):
|
64 |
+
# This bit should transform the sentences
|
65 |
+
embedded_sentences = []
|
66 |
+
|
67 |
+
for sentence in X:
|
68 |
+
sentence_vectors = []
|
69 |
+
|
70 |
+
for word in sentence:
|
71 |
+
if word in self.model.wv:
|
72 |
+
vec = self.model.wv[word]
|
73 |
+
else:
|
74 |
+
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
|
75 |
+
|
76 |
+
sentence_vectors.append(vec)
|
77 |
+
|
78 |
+
embedded_sentences.append(torch.tensor(sentence_vectors, dtype=torch.float32))
|
79 |
+
print('--> Embeddings Complete \n', flush=True)
|
80 |
+
|
81 |
+
return embedded_sentences
|
82 |
+
|
83 |
+
class Word2VecTransformer_CRF():
|
84 |
+
def __init__(self, vector_size = 100, window = 5, min_count = 1, workers = 1, embedding_dim=EMBEDDING_DIM):
|
85 |
+
self.model = None
|
86 |
+
self.vector_size = vector_size
|
87 |
+
self.window = window
|
88 |
+
self.min_count = min_count
|
89 |
+
self.workers = workers
|
90 |
+
self.embedding_dim = embedding_dim
|
91 |
+
|
92 |
+
def fit(self, X, y):
|
93 |
+
# https://stackoverflow.com/questions/17242456/python-print-sys-stdout-write-not-visible-when-using-logging
|
94 |
+
# https://stackoverflow.com/questions/230751/how-can-i-flush-the-output-of-the-print-function
|
95 |
+
print('WORD2VEC:', flush=True)
|
96 |
+
# This fits the word2vec model
|
97 |
+
self.model = Word2Vec(sentences = X, vector_size=self.vector_size, window=self.window
|
98 |
+
, min_count=self.min_count, workers=self.workers)
|
99 |
+
print('--> Word2Vec Fitted', flush=True)
|
100 |
+
return self
|
101 |
+
|
102 |
+
def transform(self, X):
|
103 |
+
# This bit should transform the sentences
|
104 |
+
embedded_sentences = []
|
105 |
+
|
106 |
+
for sentence in X:
|
107 |
+
sentence_vectors = []
|
108 |
+
|
109 |
+
for word in sentence:
|
110 |
+
features = {
|
111 |
+
'bias': 1.0,
|
112 |
+
'word.lower()': word.lower(),
|
113 |
+
'word[-3:]': word[-3:],
|
114 |
+
'word[-2:]': word[-2:],
|
115 |
+
'word.isupper()': word.isupper(),
|
116 |
+
'word.istitle()': word.istitle(),
|
117 |
+
'word.isdigit()': word.isdigit(),
|
118 |
+
}
|
119 |
+
if word in self.model.wv:
|
120 |
+
vec = self.model.wv[word]
|
121 |
+
else:
|
122 |
+
vec = np.random.normal(scale=0.6, size=(self.embedding_dim,))
|
123 |
+
|
124 |
+
# https://stackoverflow.com/questions/58736548/how-to-use-word-embedding-as-features-for-crf-sklearn-crfsuite-model-training
|
125 |
+
for index in range(len(vec)):
|
126 |
+
features[f"embedding_{index}"] = vec[index]
|
127 |
+
|
128 |
+
sentence_vectors.append(features)
|
129 |
+
|
130 |
+
embedded_sentences.append(sentence_vectors)
|
131 |
+
print('--> Embeddings Complete \n', flush=True)
|
132 |
+
|
133 |
+
return embedded_sentences
|
134 |
+
|
135 |
+
|
136 |
+
class tfidf(BaseEstimator, TransformerMixin):
|
137 |
+
def __init__(self):
|
138 |
+
self.model = None
|
139 |
+
self.embedding_dim = None
|
140 |
+
self.idf = None
|
141 |
+
self.vocab_size = None
|
142 |
+
self.vocab = None
|
143 |
+
pass
|
144 |
+
|
145 |
+
def fit(self, X, y = None):
|
146 |
+
print('TFIDF:', flush=True)
|
147 |
+
joined_sentences = [' '.join(tokens) for tokens in X]
|
148 |
+
self.model = TfidfVectorizer()
|
149 |
+
self.model.fit(joined_sentences)
|
150 |
+
self.vocab = self.model.vocabulary_
|
151 |
+
self.idf = self.model.idf_
|
152 |
+
self.vocab_size = len(self.vocab)
|
153 |
+
self.embedding_dim = self.vocab_size
|
154 |
+
print('--> TFIDF Fitted', flush=True)
|
155 |
+
return self
|
156 |
+
|
157 |
+
def transform(self, X):
|
158 |
+
|
159 |
+
embedded = []
|
160 |
+
for sentence in X:
|
161 |
+
sent_vecs = []
|
162 |
+
token_counts = {}
|
163 |
+
for word in sentence:
|
164 |
+
token_counts[word] = token_counts.get(word, 0) + 1
|
165 |
+
|
166 |
+
sent_len = len(sentence)
|
167 |
+
for word in sentence:
|
168 |
+
vec = np.zeros(self.vocab_size)
|
169 |
+
if word in self.vocab:
|
170 |
+
tf = token_counts[word] / sent_len
|
171 |
+
token_idx = self.vocab[word]
|
172 |
+
vec[token_idx] = tf * self.idf[token_idx]
|
173 |
+
sent_vecs.append(vec)
|
174 |
+
embedded.append(torch.tensor(sent_vecs, dtype=torch.float32))
|
175 |
+
print('--> Embeddings Complete \n', flush=True)
|
176 |
+
print(embedded[0][0], flush=True)
|
177 |
+
print('Those were the embeddings', flush=True)
|
178 |
+
|
179 |
+
|
180 |
+
return embedded
|
181 |
+
|
182 |
+
|
183 |
+
class BiLSTM_NER(nn.Module):
|
184 |
+
def __init__(self,input_dim, hidden_dim, tagset_size):
|
185 |
+
super(BiLSTM_NER, self).__init__()
|
186 |
+
|
187 |
+
# Embedding layer
|
188 |
+
#Freeze= false means that it will fine tune
|
189 |
+
#self.embedding = nn.Embedding.from_pretrained(embedding_matrix, freeze = False, padding_idx=-1)
|
190 |
+
|
191 |
+
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True, bidirectional=True)
|
192 |
+
self.fc = nn.Linear(hidden_dim*2, tagset_size)
|
193 |
+
|
194 |
+
def forward(self, sentences):
|
195 |
+
#embeds = self.embedding(sentences)
|
196 |
+
lstm_out, _ = self.lstm(sentences)
|
197 |
+
tag_scores = self.fc(lstm_out)
|
198 |
+
|
199 |
+
return tag_scores
|
200 |
+
|
201 |
+
# Define the FeedForward NN Model
|
202 |
+
class FeedForwardNN_NER(nn.Module):
|
203 |
+
def __init__(self, embedding_dim, hidden_dim, tagset_size):
|
204 |
+
super(FeedForwardNN_NER, self).__init__()
|
205 |
+
self.fc1 = nn.Linear(embedding_dim, hidden_dim)
|
206 |
+
self.relu = nn.ReLU()
|
207 |
+
self.fc2 = nn.Linear(hidden_dim, tagset_size)
|
208 |
+
|
209 |
+
def forward(self, x):
|
210 |
+
# x: (batch_size, seq_length, embedding_dim)
|
211 |
+
x = self.fc1(x) # (batch_size, seq_length, hidden_dim)
|
212 |
+
x = self.relu(x)
|
213 |
+
logits = self.fc2(x) # (batch_size, seq_length, tagset_size)
|
214 |
+
return logits
|
215 |
+
|
216 |
+
|
217 |
+
def pad(batch):
|
218 |
+
# batch is a list of (X, y) pairs
|
219 |
+
X_batch, y_batch = zip(*batch)
|
220 |
+
|
221 |
+
# Convert to tensors
|
222 |
+
X_batch = [torch.tensor(seq, dtype=torch.float32) for seq in X_batch]
|
223 |
+
y_batch = [torch.tensor(seq, dtype=torch.long) for seq in y_batch]
|
224 |
+
|
225 |
+
# Pad sequences
|
226 |
+
X_padded = pad_sequence(X_batch, batch_first=True, padding_value=PAD_VALUE)
|
227 |
+
y_padded = pad_sequence(y_batch, batch_first=True, padding_value=PAD_VALUE)
|
228 |
+
|
229 |
+
return X_padded, y_padded
|
230 |
+
|
231 |
+
def pred_pad(batch):
|
232 |
+
X_batch = [torch.tensor(seq, dtype=torch.float32) for seq in batch]
|
233 |
+
X_padded = pad_sequence(X_batch, batch_first=True, padding_value=PAD_VALUE)
|
234 |
+
return X_padded
|
235 |
+
|
236 |
+
|
237 |
+
class Ner_Dataset(Dataset):
|
238 |
+
def __init__(self, X, y):
|
239 |
+
self.X = X
|
240 |
+
self.y = y
|
241 |
+
|
242 |
+
def __len__(self):
|
243 |
+
return len(self.X)
|
244 |
+
|
245 |
+
def __getitem__(self, idx):
|
246 |
+
return self.X[idx], self.y[idx]
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
class LSTM(BaseEstimator, ClassifierMixin):
|
252 |
+
def __init__(self, embedding_dim = None, hidden_dim = 128, epochs = 5, learning_rate = 0.001, tag2idx = None):
|
253 |
+
self.embedding_dim = embedding_dim
|
254 |
+
self.hidden_dim = hidden_dim
|
255 |
+
self.epochs = epochs
|
256 |
+
self.learning_rate = learning_rate
|
257 |
+
self.tag2idx = tag2idx
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
def fit(self, embedded, encoded_tags):
|
262 |
+
print('LSTM:', flush=True)
|
263 |
+
data = Ner_Dataset(embedded, encoded_tags)
|
264 |
+
train_loader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=pad)
|
265 |
+
|
266 |
+
self.model = self.train_LSTM(train_loader)
|
267 |
+
print('--> LSTM trained', flush=True)
|
268 |
+
return self
|
269 |
+
|
270 |
+
def predict(self, X):
|
271 |
+
# Switch to evaluation mode
|
272 |
+
|
273 |
+
test_loader = DataLoader(X, batch_size=1, shuffle=False, collate_fn=pred_pad)
|
274 |
+
|
275 |
+
self.model.eval()
|
276 |
+
predictions = []
|
277 |
+
|
278 |
+
# Iterate through test data
|
279 |
+
with torch.no_grad():
|
280 |
+
for X_batch in test_loader:
|
281 |
+
X_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
282 |
+
|
283 |
+
tag_scores = self.model(X_batch)
|
284 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
285 |
+
|
286 |
+
# Flatten the tensors to compare word-by-word
|
287 |
+
flattened_pred = predicted_tags.view(-1)
|
288 |
+
predictions.append(flattened_pred.cpu().numpy())
|
289 |
+
|
290 |
+
predictions = np.concatenate(predictions)
|
291 |
+
return predictions
|
292 |
+
|
293 |
+
|
294 |
+
def train_LSTM(self, train_loader, input_dim=None, hidden_dim=128, epochs=5, learning_rate=0.001):
|
295 |
+
|
296 |
+
input_dim = self.embedding_dim
|
297 |
+
# Instantiate the lstm_model
|
298 |
+
lstm_model = BiLSTM_NER(input_dim, hidden_dim=hidden_dim, tagset_size=len(self.tag2idx))
|
299 |
+
lstm_model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
300 |
+
|
301 |
+
# Loss function and optimizer
|
302 |
+
loss_function = nn.CrossEntropyLoss(ignore_index=PAD_VALUE) # Ignore padding
|
303 |
+
optimizer = optim.Adam(lstm_model.parameters(), lr=learning_rate)
|
304 |
+
print('--> Training LSTM')
|
305 |
+
|
306 |
+
# Training loop
|
307 |
+
for epoch in range(epochs):
|
308 |
+
total_loss = 0
|
309 |
+
total_correct = 0
|
310 |
+
total_words = 0
|
311 |
+
lstm_model.train() # Set model to training mode
|
312 |
+
|
313 |
+
for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
|
314 |
+
X_batch, y_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')), y_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
315 |
+
|
316 |
+
# Zero gradients
|
317 |
+
optimizer.zero_grad()
|
318 |
+
|
319 |
+
# Forward pass
|
320 |
+
tag_scores = lstm_model(X_batch)
|
321 |
+
|
322 |
+
# Reshape and compute loss (ignore padded values)
|
323 |
+
loss = loss_function(tag_scores.view(-1, len(self.tag2idx)), y_batch.view(-1))
|
324 |
+
|
325 |
+
# Backward pass and optimization
|
326 |
+
loss.backward()
|
327 |
+
optimizer.step()
|
328 |
+
|
329 |
+
total_loss += loss.item()
|
330 |
+
|
331 |
+
# Compute accuracy for this batch
|
332 |
+
# Get the predicted tags (index of max score)
|
333 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
334 |
+
|
335 |
+
# Flatten the tensors to compare word-by-word
|
336 |
+
flattened_pred = predicted_tags.view(-1)
|
337 |
+
flattened_true = y_batch.view(-1)
|
338 |
+
|
339 |
+
# Exclude padding tokens from the accuracy calculation
|
340 |
+
mask = flattened_true != PAD_VALUE
|
341 |
+
correct = (flattened_pred[mask] == flattened_true[mask]).sum().item()
|
342 |
+
|
343 |
+
# Count the total words in the batch (ignoring padding)
|
344 |
+
total_words_batch = mask.sum().item()
|
345 |
+
|
346 |
+
# Update total correct and total words
|
347 |
+
total_correct += correct
|
348 |
+
total_words += total_words_batch
|
349 |
+
|
350 |
+
avg_loss = total_loss / len(train_loader)
|
351 |
+
avg_accuracy = total_correct / total_words * 100 # Accuracy in percentage
|
352 |
+
|
353 |
+
print(f' ==> Epoch {epoch + 1}/{epochs}, Loss: {avg_loss:.4f}, Accuracy: {avg_accuracy:.2f}%')
|
354 |
+
|
355 |
+
return lstm_model
|
356 |
+
|
357 |
+
|
358 |
+
class FeedforwardNN(BaseEstimator, ClassifierMixin):
|
359 |
+
def __init__(self, embedding_dim = None, hidden_dim = 128, epochs = 5, learning_rate = 0.001, tag2idx = None):
|
360 |
+
self.embedding_dim = embedding_dim
|
361 |
+
self.hidden_dim = hidden_dim
|
362 |
+
self.epochs = epochs
|
363 |
+
self.learning_rate = learning_rate
|
364 |
+
self.tag2idx = tag2idx
|
365 |
+
|
366 |
+
|
367 |
+
|
368 |
+
def fit(self, embedded, encoded_tags):
|
369 |
+
print('Feed Forward NN: ', flush=True)
|
370 |
+
data = Ner_Dataset(embedded, encoded_tags)
|
371 |
+
train_loader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=pad)
|
372 |
+
|
373 |
+
self.model = self.train_FF(train_loader)
|
374 |
+
print('--> Feed Forward trained', flush=True)
|
375 |
+
return self
|
376 |
+
|
377 |
+
def predict(self, X):
|
378 |
+
# Switch to evaluation mode
|
379 |
+
|
380 |
+
test_loader = DataLoader(X, batch_size=1, shuffle=False, collate_fn=pred_pad)
|
381 |
+
|
382 |
+
self.model.eval()
|
383 |
+
predictions = []
|
384 |
+
|
385 |
+
# Iterate through test data
|
386 |
+
with torch.no_grad():
|
387 |
+
for X_batch in test_loader:
|
388 |
+
X_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
389 |
+
|
390 |
+
tag_scores = self.model(X_batch)
|
391 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
392 |
+
|
393 |
+
# Flatten the tensors to compare word-by-word
|
394 |
+
flattened_pred = predicted_tags.view(-1)
|
395 |
+
predictions.append(flattened_pred.cpu().numpy())
|
396 |
+
|
397 |
+
predictions = np.concatenate(predictions)
|
398 |
+
return predictions
|
399 |
+
|
400 |
+
|
401 |
+
def train_FF(self, train_loader, input_dim=None, hidden_dim=128, epochs=5, learning_rate=0.001):
|
402 |
+
|
403 |
+
input_dim = self.embedding_dim
|
404 |
+
# Instantiate the lstm_model
|
405 |
+
ff_model = FeedForwardNN_NER(self.embedding_dim, hidden_dim=hidden_dim, tagset_size=len(self.tag2idx))
|
406 |
+
ff_model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
407 |
+
|
408 |
+
# Loss function and optimizer
|
409 |
+
loss_function = nn.CrossEntropyLoss(ignore_index=PAD_VALUE) # Ignore padding
|
410 |
+
optimizer = optim.Adam(ff_model.parameters(), lr=learning_rate)
|
411 |
+
print('--> Training FF')
|
412 |
+
|
413 |
+
# Training loop
|
414 |
+
for epoch in range(epochs):
|
415 |
+
total_loss = 0
|
416 |
+
total_correct = 0
|
417 |
+
total_words = 0
|
418 |
+
ff_model.train() # Set model to training mode
|
419 |
+
|
420 |
+
for batch_idx, (X_batch, y_batch) in enumerate(train_loader):
|
421 |
+
X_batch, y_batch = X_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')), y_batch.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
422 |
+
|
423 |
+
# Zero gradients
|
424 |
+
optimizer.zero_grad()
|
425 |
+
|
426 |
+
# Forward pass
|
427 |
+
tag_scores = ff_model(X_batch)
|
428 |
+
|
429 |
+
# Reshape and compute loss (ignore padded values)
|
430 |
+
loss = loss_function(tag_scores.view(-1, len(self.tag2idx)), y_batch.view(-1))
|
431 |
+
|
432 |
+
# Backward pass and optimization
|
433 |
+
loss.backward()
|
434 |
+
optimizer.step()
|
435 |
+
|
436 |
+
total_loss += loss.item()
|
437 |
+
|
438 |
+
# Compute accuracy for this batch
|
439 |
+
# Get the predicted tags (index of max score)
|
440 |
+
_, predicted_tags = torch.max(tag_scores, dim=2)
|
441 |
+
|
442 |
+
# Flatten the tensors to compare word-by-word
|
443 |
+
flattened_pred = predicted_tags.view(-1)
|
444 |
+
flattened_true = y_batch.view(-1)
|
445 |
+
|
446 |
+
# Exclude padding tokens from the accuracy calculation
|
447 |
+
mask = flattened_true != PAD_VALUE
|
448 |
+
correct = (flattened_pred[mask] == flattened_true[mask]).sum().item()
|
449 |
+
|
450 |
+
# Count the total words in the batch (ignoring padding)
|
451 |
+
total_words_batch = mask.sum().item()
|
452 |
+
|
453 |
+
# Update total correct and total words
|
454 |
+
total_correct += correct
|
455 |
+
total_words += total_words_batch
|
456 |
+
|
457 |
+
avg_loss = total_loss / len(train_loader)
|
458 |
+
avg_accuracy = total_correct / total_words * 100 # Accuracy in percentage
|
459 |
+
|
460 |
+
print(f' ==> Epoch {epoch + 1}/{epochs}, Loss: {avg_loss:.4f}, Accuracy: {avg_accuracy:.2f}%')
|
461 |
+
|
462 |
+
return ff_model
|
463 |
+
|
464 |
+
crf = sklearn_crfsuite.CRF(
|
465 |
+
algorithm='lbfgs',
|
466 |
+
c1=0.1,
|
467 |
+
c2=0.1,
|
468 |
+
max_iterations=100,
|
469 |
+
all_possible_transitions=True)
|
470 |
+
|
performance_test.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import time
|
3 |
+
from concurrent.futures import ThreadPoolExecutor
|
4 |
+
import csv
|
5 |
+
|
6 |
+
NUM_REQUESTS = 5
|
7 |
+
CONCURRENT_THREADS = 10
|
8 |
+
URL = "http://localhost:5000/"
|
9 |
+
|
10 |
+
def send_request():
|
11 |
+
data = {
|
12 |
+
'search': "A MRI, magnetic resonance imaging, scan is a very useful diagnosis tool.",
|
13 |
+
'pipeline_select': '1'
|
14 |
+
}
|
15 |
+
|
16 |
+
start_time = time.time()
|
17 |
+
try:
|
18 |
+
response = requests.post(URL, data=data)
|
19 |
+
elapsed = time.time() - start_time
|
20 |
+
if response.status_code != 200:
|
21 |
+
print(f"Error {response.status_code}: {response.text[:100]}")
|
22 |
+
return response.status_code, elapsed
|
23 |
+
except Exception as e:
|
24 |
+
print("Request failed:", e)
|
25 |
+
return 500, 0 # Treat exceptions as failures
|
26 |
+
|
27 |
+
def run_stress_test():
|
28 |
+
results = []
|
29 |
+
|
30 |
+
with ThreadPoolExecutor(max_workers=CONCURRENT_THREADS) as executor:
|
31 |
+
futures = [executor.submit(send_request) for _ in range(NUM_REQUESTS)]
|
32 |
+
for future in futures:
|
33 |
+
results.append(future.result())
|
34 |
+
|
35 |
+
successes = sum(1 for r in results if r[0] == 200)
|
36 |
+
failures = NUM_REQUESTS - successes
|
37 |
+
avg_time = sum(r[1] for r in results) / NUM_REQUESTS
|
38 |
+
max_time = max(r[1] for r in results)
|
39 |
+
min_time = min(r[1] for r in results)
|
40 |
+
|
41 |
+
print(f"\n=== Stress Test Results ===")
|
42 |
+
print(f"Total Requests: {NUM_REQUESTS}")
|
43 |
+
print(f"Concurrency Level: {CONCURRENT_THREADS}")
|
44 |
+
print(f"Successes: {successes}")
|
45 |
+
print(f"Failures: {failures}")
|
46 |
+
print(f"Avg Time: {avg_time:.3f}s")
|
47 |
+
print(f"Min Time: {min_time:.3f}s")
|
48 |
+
print(f"Max Time: {max_time:.3f}s")
|
49 |
+
|
50 |
+
return [NUM_REQUESTS, CONCURRENT_THREADS, avg_time, max_time]
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
# Open the CSV file for writing the summary results
|
54 |
+
with open('stress_test_results.csv', 'w', newline='') as csvfile:
|
55 |
+
writer = csv.writer(csvfile)
|
56 |
+
writer.writerow(['Total Requests', 'Concurrency Level', 'Avg Time', 'Max Time'])
|
57 |
+
|
58 |
+
for users in [1, 5, 10, 20, 50, 100]:
|
59 |
+
CONCURRENT_THREADS = users
|
60 |
+
NUM_REQUESTS = users * 5
|
61 |
+
result = run_stress_test()
|
62 |
+
|
63 |
+
writer.writerow(result)
|
64 |
+
|