Spaces:
Sleeping
Sleeping
Update loggıng
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from flask import Flask, render_template, request
|
2 |
from joblib import load
|
3 |
import pandas as pd
|
4 |
import re
|
@@ -9,156 +9,100 @@ import numpy as np
|
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
import torch
|
11 |
import os
|
|
|
12 |
|
|
|
13 |
pd.set_option('display.max_colwidth', 1000)
|
14 |
|
15 |
-
|
16 |
# Patch torch.load to always load on CPU
|
17 |
original_torch_load = torch.load
|
18 |
def cpu_load(*args, **kwargs):
|
19 |
return original_torch_load(*args, map_location=torch.device('cpu'), **kwargs)
|
20 |
-
|
21 |
torch.load = cpu_load
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
os.environ["HF_HUB_CACHE"] = cache_dir # optional but informative
|
26 |
-
|
27 |
-
repo_id = 'hw01558/nlp-coursework-pipelines'
|
28 |
-
local_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir)
|
29 |
-
return load(local_path)
|
30 |
-
|
31 |
-
#repo_id = 'hw01558/nlp-coursework-pipelines'
|
32 |
-
#local_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
33 |
-
#return load(local_path)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
PIPELINES = [
|
36 |
-
{
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
},
|
41 |
-
{
|
42 |
-
|
43 |
-
|
44 |
-
'filename': "pipeline_ex1_s1.joblib"
|
45 |
-
},
|
46 |
-
{
|
47 |
-
'id': 2,
|
48 |
-
'name': 'Trained on a FeedForward NN',
|
49 |
-
'filename': "pipeline_ex1_s2.joblib"
|
50 |
-
},
|
51 |
-
{
|
52 |
-
'id': 3,
|
53 |
-
'name': 'Trained on a CRF',
|
54 |
-
'filename': "pipeline_ex1_s3.joblib"
|
55 |
-
},
|
56 |
-
{
|
57 |
-
'id': 4,
|
58 |
-
'name': 'Trained on a small dataset',
|
59 |
-
'filename': "pipeline_ex2_s3.joblib"
|
60 |
-
},
|
61 |
-
{
|
62 |
-
'id': 5,
|
63 |
-
'name': 'Trained on a large dataset',
|
64 |
-
'filename': "pipeline_ex2_s2.joblib"
|
65 |
-
},
|
66 |
-
{
|
67 |
-
'id': 6,
|
68 |
-
'name': 'Embedded using TFIDF',
|
69 |
-
'filename': "pipeline_ex3_s2.joblib"
|
70 |
-
},
|
71 |
-
{
|
72 |
-
'id': 7,
|
73 |
-
'name': 'Embedded using GloVe',
|
74 |
-
'filename': "pipeline_ex3_s3.joblib"
|
75 |
-
},
|
76 |
-
|
77 |
-
|
78 |
]
|
79 |
|
80 |
pipeline_metadata = [{'id': p['id'], 'name': p['name']} for p in PIPELINES]
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
def get_pipeline_by_id(pipelines, pipeline_id):
|
83 |
return next((p['filename'] for p in pipelines if p['id'] == pipeline_id), None)
|
84 |
|
85 |
def get_name_by_id(pipelines, pipeline_id):
|
86 |
return next((p['name'] for p in pipelines if p['id'] == pipeline_id), None)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
def requestResults(text, pipeline):
|
91 |
labels = pipeline.predict(text)
|
92 |
if isinstance(labels, np.ndarray):
|
93 |
labels = labels.tolist()
|
94 |
return labels[0]
|
95 |
|
96 |
-
import os
|
97 |
-
import logging
|
98 |
-
|
99 |
-
#logging.basicConfig(
|
100 |
-
# level=logging.INFO,
|
101 |
-
# format='%(asctime)s [%(levelname)s] %(message)s',
|
102 |
-
# handlers=[
|
103 |
-
# logging.FileHandler("app.log",mode='w')
|
104 |
-
#
|
105 |
-
#]
|
106 |
-
|
107 |
-
#)
|
108 |
-
|
109 |
-
LOG_FILE = "./usage_log.jsonl" # Use temporary file path for Hugging Face Spaces
|
110 |
-
LOG_FILE = os.path.join("logs", "usage_log.jsonl")
|
111 |
-
|
112 |
def log_interaction(user_input, model_name, predictions):
|
113 |
-
# https://betterstack.com/community/guides/logging/how-to-start-logging-with-python/
|
114 |
-
logging.basicConfig(filename=LOG_FILE, level=logging.INFO)
|
115 |
log_entry = {
|
116 |
"timestamp": datetime.datetime.utcnow().isoformat(),
|
117 |
"model": model_name,
|
118 |
"user_input": user_input,
|
119 |
"predictions": predictions
|
120 |
}
|
121 |
-
|
122 |
try:
|
123 |
-
|
124 |
-
# with open(LOG_FILE, "a") as log_file:
|
125 |
-
# log_file.write(json.dumps(log_entry) + "\n")
|
126 |
-
logging.info(log_entry)
|
127 |
print("[INFO] Logged interaction successfully.")
|
128 |
except Exception as e:
|
129 |
print(f"[ERROR] Could not write log entry: {e}")
|
130 |
|
131 |
-
|
132 |
-
app = Flask(__name__)
|
133 |
-
|
134 |
-
|
135 |
@app.route('/')
|
136 |
def index():
|
137 |
-
return render_template('index.html', pipelines=
|
138 |
-
|
139 |
|
140 |
@app.route('/', methods=['POST'])
|
141 |
def get_data():
|
142 |
if request.method == 'POST':
|
143 |
-
|
144 |
text = request.form['search']
|
145 |
tokens = re.findall(r"\w+|[^\w\s]", text)
|
146 |
-
|
147 |
|
148 |
pipeline_id = int(request.form['pipeline_select'])
|
149 |
pipeline = load_pipeline_from_hub(get_pipeline_by_id(PIPELINES, pipeline_id))
|
150 |
name = get_name_by_id(PIPELINES, pipeline_id)
|
151 |
-
|
152 |
-
labels = requestResults(
|
153 |
results = dict(zip(tokens, labels))
|
154 |
|
155 |
log_interaction(text, name, results)
|
156 |
|
157 |
-
return render_template('index.html', results=results, name=name, pipelines=
|
158 |
-
|
159 |
|
|
|
160 |
if __name__ == '__main__':
|
161 |
app.run(host="0.0.0.0", port=7860)
|
162 |
-
|
163 |
-
#if __name__ == '__main__':
|
164 |
-
#app.run(host="0.0.0.0", port=7860)
|
|
|
1 |
+
from flask import Flask, render_template, request
|
2 |
from joblib import load
|
3 |
import pandas as pd
|
4 |
import re
|
|
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
import torch
|
11 |
import os
|
12 |
+
import logging
|
13 |
|
14 |
+
# Ensure proper display for debugging
|
15 |
pd.set_option('display.max_colwidth', 1000)
|
16 |
|
|
|
17 |
# Patch torch.load to always load on CPU
|
18 |
original_torch_load = torch.load
|
19 |
def cpu_load(*args, **kwargs):
|
20 |
return original_torch_load(*args, map_location=torch.device('cpu'), **kwargs)
|
|
|
21 |
torch.load = cpu_load
|
22 |
|
23 |
+
# Flask app setup
|
24 |
+
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Logging setup
|
27 |
+
LOG_DIR = "/tmp/logs" # Use a universally writable directory
|
28 |
+
LOG_FILE = os.path.join(LOG_DIR, "usage_log.jsonl")
|
29 |
+
os.makedirs(LOG_DIR, exist_ok=True)
|
30 |
+
logging.basicConfig(
|
31 |
+
filename=LOG_FILE,
|
32 |
+
level=logging.INFO,
|
33 |
+
format='%(asctime)s [%(levelname)s] %(message)s'
|
34 |
+
)
|
35 |
+
|
36 |
+
# Define pipelines
|
37 |
PIPELINES = [
|
38 |
+
{'id': 8, 'name': 'Embedded using BioWordVec', 'filename': "pipeline_ex3_s4.joblib"},
|
39 |
+
{'id': 1, 'name': 'Baseline', 'filename': "pipeline_ex1_s1.joblib"},
|
40 |
+
{'id': 2, 'name': 'Trained on a FeedForward NN', 'filename': "pipeline_ex1_s2.joblib"},
|
41 |
+
{'id': 3, 'name': 'Trained on a CRF', 'filename': "pipeline_ex1_s3.joblib"},
|
42 |
+
{'id': 4, 'name': 'Trained on a small dataset', 'filename': "pipeline_ex2_s3.joblib"},
|
43 |
+
{'id': 5, 'name': 'Trained on a large dataset', 'filename': "pipeline_ex2_s2.joblib"},
|
44 |
+
{'id': 6, 'name': 'Embedded using TFIDF', 'filename': "pipeline_ex3_s2.joblib"},
|
45 |
+
{'id': 7, 'name': 'Embedded using GloVe', 'filename': "pipeline_ex3_s3.joblib"},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
]
|
47 |
|
48 |
pipeline_metadata = [{'id': p['id'], 'name': p['name']} for p in PIPELINES]
|
49 |
|
50 |
+
# Helper functions
|
51 |
+
def load_pipeline_from_hub(filename):
|
52 |
+
cache_dir = "/tmp/hf_cache"
|
53 |
+
os.environ["HF_HUB_CACHE"] = cache_dir
|
54 |
+
repo_id = 'hw01558/nlp-coursework-pipelines'
|
55 |
+
local_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir)
|
56 |
+
return load(local_path)
|
57 |
+
|
58 |
def get_pipeline_by_id(pipelines, pipeline_id):
|
59 |
return next((p['filename'] for p in pipelines if p['id'] == pipeline_id), None)
|
60 |
|
61 |
def get_name_by_id(pipelines, pipeline_id):
|
62 |
return next((p['name'] for p in pipelines if p['id'] == pipeline_id), None)
|
63 |
|
|
|
|
|
64 |
def requestResults(text, pipeline):
|
65 |
labels = pipeline.predict(text)
|
66 |
if isinstance(labels, np.ndarray):
|
67 |
labels = labels.tolist()
|
68 |
return labels[0]
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def log_interaction(user_input, model_name, predictions):
|
|
|
|
|
71 |
log_entry = {
|
72 |
"timestamp": datetime.datetime.utcnow().isoformat(),
|
73 |
"model": model_name,
|
74 |
"user_input": user_input,
|
75 |
"predictions": predictions
|
76 |
}
|
|
|
77 |
try:
|
78 |
+
logging.info(json.dumps(log_entry))
|
|
|
|
|
|
|
79 |
print("[INFO] Logged interaction successfully.")
|
80 |
except Exception as e:
|
81 |
print(f"[ERROR] Could not write log entry: {e}")
|
82 |
|
83 |
+
# Routes
|
|
|
|
|
|
|
84 |
@app.route('/')
|
85 |
def index():
|
86 |
+
return render_template('index.html', pipelines=pipeline_metadata)
|
|
|
87 |
|
88 |
@app.route('/', methods=['POST'])
|
89 |
def get_data():
|
90 |
if request.method == 'POST':
|
|
|
91 |
text = request.form['search']
|
92 |
tokens = re.findall(r"\w+|[^\w\s]", text)
|
93 |
+
tokens_formatted = pd.Series([pd.Series(tokens)])
|
94 |
|
95 |
pipeline_id = int(request.form['pipeline_select'])
|
96 |
pipeline = load_pipeline_from_hub(get_pipeline_by_id(PIPELINES, pipeline_id))
|
97 |
name = get_name_by_id(PIPELINES, pipeline_id)
|
98 |
+
|
99 |
+
labels = requestResults(tokens_formatted, pipeline)
|
100 |
results = dict(zip(tokens, labels))
|
101 |
|
102 |
log_interaction(text, name, results)
|
103 |
|
104 |
+
return render_template('index.html', results=results, name=name, pipelines=pipeline_metadata)
|
|
|
105 |
|
106 |
+
# Run the app
|
107 |
if __name__ == '__main__':
|
108 |
app.run(host="0.0.0.0", port=7860)
|
|
|
|
|
|